>e< vimacc

Accellence Technologies GmbH

Universal Video Management System

vimacc SDK

TCP Steuerschnittstelle

VIMACC_ CONTROL interface specification
to control a vimacc system by a
higher level management system

Protocol version: 1.10.6

This document is intellectual property of Accellence Technologies GmbH.
Subject to alterations, errors excepted.

This document may not be used, reproduced, or made available

without express consent of Accellence Technologies GmbH.

accellence Version 22.10.16

vimacc - TCP Steuerschnittstelle

Legal Notice
Publisher

Company: Accellence Technologies GmbH
Commercial register: HRB 110799 Hannover
Managing director: Dipl.-Inf. (FH) Frank Christ, Dr.-Ing. Heinz Stephanblome

Editor: Torsten Heinrich, Mike Pl6tz

Phone: +49 (0)511 277 2400

Fax: +49 (0)511 277 2499

email: info@accellence.de

Web: www.accellence.de / www.vimacc.de
Address: Accellence Technologies GmbH

Garbsener Landstrasse 10, 30419 Hannover, Germany

© 2013-2022 Accellence Technologies GmbH Date: 24 March 2022

accellence Page 2

ol oal e s

mailto:info@accellence.de

vimacc - TCP Steuerschnittstelle Table of Contents

| Table of Contents

Table Of CONTENLSuiie e e e e e e s 3
List Of ADDIEVIALIONScooeiiiiiiiiiecceee e 5
A [01 1o o 1§ o [o RSP 6
1.1 DOCUMENT PUIMPOSE .ottt ettt e et e et e e e et e e e eatr e e e eata s e e earnneaaees 6
1.2 DOCUMENLALION STFUCTUIEeiviiiiiiiiiiiiiiiiieieeeeeeeeee ettt 6
1.3 VIMACC EItIONS ..o 7

P ©o] o1 i (o] B 1] (=] = Tod =L PR 8
2.1 L@ YT =SS 8

3 VIMACC _CONTROL ..ttt e et e e e e e e e eaaneeenen 9
3.1 7= 1= - PP 9
3.2 CONNECTION SEEUD ..ttt 10
3.3 Network and TranSPOIt LAYluiii e e e e e e e e e e e eeeeenns 11
3.4 Presentation and SESSION LAYETccvvviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee ettt 11
3.5 P Y o] o] Tox=1 i o] o I =Y SRR 11
3.6 NEIWOIK RESOUICES. ...uuuiii e eeieeeitit ettt e e ettt s e e e e e e e aaeta e e e e e e e eeennennns 12
3.7 Telegram DeSCHPLONuuiiiei e e e e et s e e e e e e e e aeranaa e e eeaes 12
3.7.1 Structure of the Control COMMANAS..........coiiieiiiiiiie e 12
3.7.2 WU 11 =T 1 o= 1 1 To] o SRR 13
3.7.3 VIMACC_CONTROL_BASIC ..ot 15
3.73.1 LCT=T LT - | R 15
3.7.3.2 Querying Available COMMANScoiiiiiiiii e 15
3.7.3.3 Monitoring the Control CONNECHIONcciiiiiiiiiiiii et 15
3.7.34 Connecting Live or Playback StreamsS............uuuuuiuiiiiiiiiiiieieieinieisisisieinreinnnnn. 16
3.7.35 Disconnecting Live or Playback Streamsccccccccvvviviviiiiiiiiieeeeeee 17
3.7.3.6 Defining the Geometry of a vimacc Workstation Instance...........ccccccccvvvvevivininnnnn.. 18
3.7.3.7 Defining the Arrangement of the Video Dialogs of a vimacc Workstation Instance . 22
3.7.3.8 Defining the Presentation within the Video Dialogs of a Workstation Instance........ 23
3.7.3.9 Controlling a Playback Streamcooceviiiiiiiiiiiie e 24
3.7.3.10 Controlling @ PTZ CAMEI@......uuiii ittt 27
3.7.3.11 Querying Configured CAMETASccooiiiiiiiiiiie ettt 29
3.7.3.12 Querying Available Playback Streamscccceiiiiiiiiiiiieeiie e 30
3.7.3.13 Querying Playback Sessions of a Playback Streamccccccceeiviiiiiiiinene e, 33
3.7.3.14 Querying the Time Limits of a Playback Streamcccccooiiiiiniii 34
3.7.3.15 Querying the Timeline of a Playback Streamccccccuvvviviiieiviniiininieinieinieinieininnn, 36
3.7.3.16 Querying the Configured Monitors of the vimacc Systemccccccvvvvvvvvininininininnn, 37
3.7.3.17 Querying the Configured Workstation Instances of the vimacc System 38
3.7.3.18 Querying the Configured Scenarios of the vimacc Systemccccccvvvvvvivinininnnnnnns 38
3.7.3.19 Requesting Status Information from vimacc DeViCescccccovviiiiieeiiiiiiiiiiiieeenn. 39
3.7.3.20 Requesting Event Information from vimacc DeViCeScccoeviiiiiiiieiieiiniiiiieeeen, 43
3.7.3.21 Requesting Status Information from Playback Streams............cccccvvevveeevniiciininennn. 45
3.7.3.22 Requesting Status Information from the vimacc System............cccocvvveeevviiciiiieennn, 47
3.7.3.23 Requesting Status Information about the vimacc Configuration Servers................. 50
3.7.3.24 Requesting Status Information from vimacc HOStSccccceveviiiiiiiieiie e, 52
3.74 VIMACC_CONTROL_DEVICES_ALARMS_SCENARIOS........cccccciiviviieieeeeee 54
3.74.1 (1=t LT - | PP PRUT 54
3.74.2 CONNECHING @ SCENANIO ...ttt e et e e e e ab e e e e e e e nneeeees 54
3.74.3 Reporting an Alarm Event to the vimacC SYStemc..ueeeiiieiiiiiiiiiieeieeeeen 55
accellence page 3

vimacc - TCP Steuerschnittstelle Table of Contents

3.7.4.4 Accepting an Alarm for a Workstation INStanCe...........cccuvveveeeieiciieeeeee e 57
3.7.4.5 Terminating &N ALBITIoviiii e 58
3.7.4.6 Triggering the Alarm Status of @ VImacC DeVICe...........cocoiuiiiiiiiiiieiiiiee e 59
3.7.4.7 Clearing the Alarm Status of a VIimacC DEVICEcccccuvveiiiiiiieiiiie e 61
3.7.4.8 Delete Protection for Time Ranges of a Playback Streamcccccooiiiiiiiennnn 62
3.7.4.9 Removing a Delete Protection for a Time Range of a Playback Stream 63
3.7.4.10 Querying the Protected Sections of a Playback Streamcccooiiiiiiiniiininnnen, 65
3.7.4.11 Deleting a Time Range from a Playback Streamccccccceeeeiiiiciiiieene e, 66
3.7.4.12 Setting a Text Mark for a LiVe Streamcccooiiiiiiiiiie e 67
3.75 VIMACC_CONTROL_ALL ...ttt 68
3.751 LG =T o= | PP PRPPPR PRI 68
3.75.2 WItING @ Data POINT........oviiiiie i e e e e e s e aeeeeee s 68
3.75.3 Writing the Command Data Point of a vimacc DevViCe........ccccccovvcvvvveeeeeeciiiiiiieeeenn, 69
3.7.5.4 Reading & Data POINT.............eiiiiiiiiieiii et 70
3.7.6 VIMACC_CONTROL_FALLBACK ...ttt st nee e 72
3.76.1 LCT=T LT - | TP PR 72
3.7.6.2 Querying Available COMMANTScoiiiiiiiiiii e 72
3.7.6.3 Monitoring the Control CONNECTIONcoiuiiieiiiiie et 72
3.76.4 Requesting Status Information from the vimacc System...........ccccovvvveeivniiciiiiennnn, 72
10 = o ol IV T 73
4.1 VLo L=To Ao [1= PR SRSUPPPPRPN 73
4.2 RTSP SBIVET ... et e et e et e e e eaa e aeees 73

5 VIMACC PIAaYDACK.o 74
5.1 VLo L=To Ao [1= PP SRRRPPPRPP 74
5.2 RTSP SBIVET ... et e et e et e e e eaa e aeees 74

6 SUPPOIT/ HOUINE ... 75
72 1 =G 76
accellence page 4

vimacc - TCP Steuerschnittstelle List of Abbreviations

|List of Abbreviations

ASCII American Standard Code for Information Interchange
AAC Advanced Audio Coding

AES Advanced Encryption Standard

CA Certificate Authority or Certification Authority
CCTV Closed Circuit Television

DB Database

DCOM Distributed Component Object Model

DVR Digital Video Recorder

IP Internet Protocol

ISCSI Internet Small Computer System Interface
GUI Graphical User Interface

GOP Group of Pictures

HID Human Interface Device

LDAP Lightweight Directory Access Protocol

MMI Man Machine Interface

NAS Network Attached Storage (Fibre Channel, iSCSI, ...)
NFR Non-functional Requirement

NTP Network Time Protocol

NVR Network Video Recorder

OPC OLE for Process Control

RFC Request for Comments

RTSP RealTime Streaming Protocol

PTZ/ SNz Pan Tilt Zoom

PKCS Public Key Cryptography Standards

PKI Public Key Infrastructure

SAN Storage Area Network (CIFS, NFS, SMB etc.)
SAS Serial Attached SCSI

SDP Session Description Protocol (see RFC 4566)
SHA Secure Hash Algorithm

SQL Structured Query Language

SRTP Secure Real-Time Transport Protocol

SSD Solid State Drive

SSL Secure Sockets Layer

SW Software

TCP Transmission Control Protocol

UDP User Datagram Protocol

accellence Page

ol oal e s

vimacc - TCP Steuerschnittstelle Index

|1 Introduction

1.1 Document Purpose

This document is part of the system documentation of the vimacc® video management
system from Accellence Technologies GmbH.

It describes the control and streaming interfaces of a vimacc® system to higher level
management systems.

The three digits on the document cover refer to the version number of the vimacc®
control protocol. The last digit represents the version of the document itself,
(example: 1.10.5.2 -> Protocol version 1.10.5, revision 2).

1.2 Documentation Structure

The vimacc® system documentation comprises several documents dealing with
different sub-aspects.

The following documents are available by default:

e vimacc® System Documentation: Introduction
Overview of the general features and respective fields of application

e vimacc® System Documentation: Features and Characteristics
Detailed description of technical performance parameters and
features/characteristics

e vimacc® System Documentation: System Requirements
Information on minimum requirements for hardware and operating system

e vimacc® System Documentation: System Design
Conditions to be met when planning a video system and assistance with
dimensioning the complete system

e vimacc® System Documentation: List of Video Sources
List of available video sources (cameras, encoders), drivers and other
connectable peripherals

e vimacc® System Documentation: Architecture
Detailed overview of the architecture (internal document)

'ahC?C"el Ience Version 2.2.10.16

noloagies

vimacc - TCP Steuerschnittstelle Chapter 1: Introduction

1.3 vimacc Editions

The video management software vimacc® is provided in different versions which
differ in function scope and operation purpose.

vimacc® Professional
- video management system for installation on a single server or PC
- supports up to 64 cameras in full resolution and with full framerate (requires
appropriate hardware equipment)
- up to 2 additional, standalone workstations
- simultaneous display of live, playback and alarm videos as well as site layouts
- unlimited number of monitors per workstation
- stores videos in original format
- export of videos to CD/DVD or USB incl. metadata
- integrated video wall functions
- time-synchronized playback at up to 1000 times the normal speed
- 100-fold digital zoom in live and playback videos
- interactive and stackable site layouts
- private zone masking with 2 security levels
- video system control via HTTPS or TCP SDK
- audio recording/playback

vimacc® Enterprise
- supports all vimacc® Professional functions
- number of cameras and workstations not limited by software
- decentralized installation of vimacc processes possible
- server/service redundancy and load balancing
- can be integrated into domain infrastructures like Active Directory
- can be connected to external systems (e.g. guide systems, Interkom)

vimacc® OA video subsystem for SCADA systems like SIMATIC WinCC OA
- supports all vimacc® Enterprise functions
- No user interface for operation. Integrates completely and transparently into a
higher level SCADA system.

vimacc® Parking is a special edition for car park operators
- supports all vimacc® Enterprise functions
- deep integration with Commend/Schneider intercom systems incl. speech
channel and door/gate control

vimacc® Safe Office for office environments with increased risk potential
- supports all vimacc® Enterprise functions
- supports alarm sensors to activate silent alarms
- automatic display of alarm images in neighbouring offices and/or at security
services

vimacc® Visitor Management for active guidance of persons within buildings
- supports all vimacc® Professional functions
- additionally: direct two-way communication with respective cameras

accellence Page

o g\l e s

vimacc - TCP Steuerschnittstelle Chapter 2: Control Interfaces

|2 Control Interfaces

2.1 Overview:

vimacc® supports different data interfaces to establish connections between
streaming sources and display processes or to route live/playback streaming data to
third party processes.

The functions provided by vimacc® are assigned to several communication channels
(CONTROL, LIVE, PLAYBACK) according to Figure 2.1:

4 N 4 N

<«———VIMACC_CONTROL (TCP)——
<«——VIMACC_LIVE (RTSP}———
Managementsystem vimacc

<«——VIMACC_PLAYBACK (RTSP)——

<4——VIMACC SDK (http)——

- j S J

Figure 2.1: vimacc SDK - interfaces

VIMACC_CONTROL (TCP): Standardized control of connections for live
presentation and archive access, control of devices like PTZ cameras, I/O contacts,
signalling of events, loading and running of scripts and reading device ID lists and
device states.

VIMACC_LIVE (RTSP): Access to live streams of digital video devices like network
cameras or video recorders.

VIMACC_PLAYBACK (RTSP): Access to recorded streaming data for subsequent
external processing, e.g. post analyses processes, playback, etc.

VIMACC SDK (http): The control and streaming interfaces via the HTTP protocol are
described in a separate document.
See vimacc_Systemdokumentation_ HTTP_Interface.pdf

The term Management System (MMS) comprises all disciplines that implement a
pairing with vimacc®like control centre systems, etc.

accellence Page s

ol oal e s

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

|3 VIMACC_CONTROL

3.1 General

The VIMACC_CONTROL data interface enables a vimacc® system to exchange data
with an external system. Connections between video sources and display processes
can be established. In case of certain sources (e.g. PTZ cameras) additional control
commands can be sent.

The VIMACC_CONTROL data interface is implemented as a simple, stateless
interface. This means that vimacc® does not store any states of the established
connections at the interface and that the controlling instance is always responsible
for disconnecting.

Following the topology of the target system where the vimacc® system is operated as
structured subsystem, vimacc® control interfaces can be installed and executed in
each partial segment.

On vimacc® level, all control interfaces are equally important, i.e. each single
interface is able to control the processes of the entire vimacc® system. The
coordination of these processes (access rights, priority rules, etc.) has to be
performed by the higher level management system respectively higher level control
instance.

accellence page

noloaies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

The VIMACC_CONTROL interface for controlling a vimacc® system is available in
different versions that support different function sets.

The availability of the respective variant is defined in the licence file and has to be
configured accordingly in the AccVimaccAdministrationCenter, see vimacc®
Administrator's Guide.

The following protocol variants are defined:

¢ VIMACC CONTROL_BASIC
This protocol represents the simplest form of the VIMACC_CONTROL control
interface.
It contains basic control commands to establish live video connections and
guery device states.

e VIMACC_CONTROL_DEVICES_ALARMS_SCENARIOS
This protocol adds commands for connecting scenarios, passing on alarms to
the vimacc® system and accepting/completing generated alarms to the
VIMACC_CONTROL_BASIC protocol.

e VIMACC CONTROL_ALL
This protocol adds commands for writing so called "data points" of the
vimacc® systems to the VIMACC_CONTROL_DEVICES _
ALARMS_SCENARIOS protocaol.

e VIMACC _CONTROL_FALLBACK
Supports only a limited set of commands to query some information about the
status of a vimacc® system. This protocol is automatically enabled if a
vimacc® system can no longer be properly operated e.g. due to an expired
licence.

The VIMACC_CONTROL interface cannot be used to directly access the streaming
data.

3.2 Connection Setup

An MMS and/or higher level control instance may establish any number of TCP
connections to the servers of the vimacc® system on which a vimacc® control
interface is running, if required.

vimacc®does not limit the number of simultaneous connections.

An MMS and/or higher level instance should monitor the established TCP
connections via test telegrams. If a connection error is detected, the MMS should
close the connection and try to restart it after a few seconds.

accellence Page 10

o g\l e s

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.3 Network and Transport Layer

¢ Network layer: IP
e Transport layer: TCP

3.4 Presentation and Session Layer

e Session layer: TCP socket connections
¢ Presentation layer: Plain text, UTF-8 encoded

3.5 Application Layer

The VIMACC_CONTROL_BASIC data interface serves as text-based protocol for the
application layer.

vimacc® runs on all servers operated as communication entities for the MMS a
process that keeps a TCP server in list mode on a configurable port. The MMS can
establish a TCP connection to the process addresses consisting of IP address and
port number, any time.

After a connection has been successfully established, the vimacc® TCP server
displays the name of the released protocol (see above), the version number of the
protocol and the version number of the vimacc system.

vimacc>MMS:
<Protokoll-Name>:Version <Versionsnummer>;vimacc:Version

<Versionsnummer>

Then, the MMS initiates a protocol session by authenticating to the vimacc® system
(see chapter 3.7.2).

After the session has been initiated, the MMS may send control data in the form of
text-based protocol commands via the TCP connection. Each protocol command is
acknowledged by the respective vimacc® process with a text-based message.
Acknowledgement may be asynchronously followed by the results of the command
execution.

The protocol sequences are transmitted UTF-8 encoded via the TCP connection.
All protocol commands and messages are terminated by the \ r\n escape sequence.

All parameters of the protocol commands and messages are interpreted as text
strings.

accellence Page 11

noloaies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.6 Network Resources

The TCP server for the VIMACC_CONTROL_BASIC data interface can be accessed
via a TCP port that can be configured during the project specific vimacc®installation.
The default port is 4227 .

3.7 Telegram Description

3.7.1 Structure of the Control Commands

The control data are transferred as ASCII strings and consist of key-value pairs
linked by an equals sign ('=").

A control command always consists of a key-value pair followed by optional
parameters separated from each other by a semicolon (';").

A control command always consists of the cmd keyword with the name of the
command as value followed by a parameter list of any length.

Parameters are to be passed as key-value pair in the following form as well:
<Parameter-Name>=Wert.

The order of the key-value pairs is not defined.

If spaces, special characters like ("), (\), (\r), (\n), and (\t)), punctuation marks like (;)
or signs like (=) should be transmitted in the value of a parameter, they must be
preceded by an escape character (\) (i.e. they have to be "escaped").

If key-value pairs should be transmitted in the value of a parameter as well, they
have to be "escaped" several times (see command writeDp in chapter 3.7.5.2).

A full protocol command is always completed with the escape sequence \r\n.

Each control command is acknowledged by vimacc® with a response text.
Responses are transmitted as ASCII strings as well.

Each response consists of several key-value pairs separated from each other by a
semicolon ().

They are always preceded by the msgsize parameter followed by the number of
characters contained in the message.

This string is then followed by the keyword resp, the name of the control command
as value and the list of parameters of the control command separated from each
other by a semicolon (;'). Then, the answer is added.

The value of the msgsize parameter always contains the number of characters of
the response text starting with the keyword resp.

Example:
MMS->vimacc:
cmd=keepalive;userdata=1234

accellence page 12

ol oal e s

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

vimacc>MMS:

msgsize=38; resp=keepalive;userdata=1234;answer=ok

Note:

The control interface is being continuously enhanced. Compatibility with previous
protocol versions is taken into account. However, in case of existing commands or
responses, additional parameters can be added. Thus, a protocol parser should be
able to handle a control command response containing additional parameters.

In the following, the possible control commands and arguments are listed. In addition,
the responses always returned by the remote station are specified.
For reasons of clarity, entry msgsize=<len>; is omitted.

3.7.2 Authentication

After a TCP connection has been successfully established, the authentication is
performed. For authentication, the MMS as well as the vimacc® system use the
same user name and password which are encrypted when transmitted via the
network.

Authentication is performed on the base of the digest access authentication process
as follows:

First, the MMS has to signalize to the vimacc® TCP server that is wants to log in.
Then, the vimacc® TCP server generates a random text (the so called 'server
challenge’) and returns it to the client. The client then has to build a text string
consisting of this random text, the user name and the password and generate an
MD5 hash value from it.

The ASCII format of the hexadecimal presentation of this hash value has to be sent
to the TCP server for a check. The server will then allow or deny the login.

Sequence of commands and associated responses:

1. MMS->vimacc:
cmd=login;userdata=<text>

vimacc>MMS:
resp=login;userdata=<text>;answer=failed,access denied;
serverchallenge=<random string>

2. MMS-vimacc:
cmd=login;userdata=<text>;clientresponse=<Ascii (Md5 (<usernam

e>:<password>:<random string from serverchallenge>))>

vimacc>MMS:

a) Client answer correct:

accellence Page 13

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

resp=login;userdata=<text>;clientresponse=<Ascii (Md5 (<userna
me>:<password>:<random string from serverchallenge>))>;
answer=ok,access granted

b) Client answer not correct:
resp=login;userdata=<text>;clientresponse=Ascii (Md5 (<usernam
e>:<password>:<random string from serverchallenge>));
answer=failed, access denied;serverchallenge=<random string>

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:
The following login data is assumed:

User name: "UserName"

Password: "Password"

MMS->vimacc:
cmd=login;userdata=1234

vimacc>MMS:
resp=login;userdata=1234;answer=failed,access denied;

serverchallenge=75798a683873£75071b7da939173£0%a
MMS->vimacc:

On client side, the following hash value has to be calculated:
Ascii(Md5(“UserName:Password:75798a683873f75071b7da939173f09a”)) =
792604ca7fb36e0177f24899e004590b

cmd=login;userdata=1234;clientresponse=792604ca7fb36e0177
£24899e004590b

vimacc>MMS:
resp=login;userdata=1234;clientresponse=792604ca’7fb36e017
7£24899e004590b;answer=0k,access granted

accellence page 14

e chnologloes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3 VIMACC_CONTROL_BASIC
3.7.3.1 General

This protocol represents the simplest form of the VIMACC_CONTROL -control
interface.

It contains basic control commands to establish live video connections and to query
device lists and states.

3.7.3.2 Querying Available Commands

Command:
cmd=help;userdata=<text>

Response:
resp=help;userdata=<text>;answer=ok,parameterlist{\r\nbefehl#l
\r\n...befehl#n\r\n]}

This command is used to query the control commands available in the installed
protocol variant.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

¢ MMS->vimacc:
cmd=help;userdata=1234

vimacc>MMS:
resp=help;userdata=1234;answer=o0k, parameterlist{\r\nlogin
\r\nhelp\r\nkeepalive\r\nshow\r\n.. subscribeevents\r\n}

3.7.3.3 Monitoring the Control Connection

Command:
cmd=keepalive;userdata=<text>

Response:
resp=keepalive;userdata=<text>;answer=ok

The MMS should send a keepalive command every 5 seconds. If this command is
not sent, vimacc® closes the control connection. The MMS then has to establish a
new control connection and authenticate itself again.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

accellence Page 15

technologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Example:

e MMS-vimacc:
cmd=keepalive;userdata=1234

vimacc>MMS:
resp=keepalive;userdata=1234;answer=o0k

3.7.3.4 Connecting Live or Playback Streams

Command:
cmd=show; contextid=<text>;deviceid=<CameralD>;dest=<DisplayID>
;videodlg=<number>;userdata=<text>

Response:
resp=show; contextid=<text>;deviceid=<CameralD>;dest=<DisplayID
>;videodlg=<number>;userdata=<text>;answer=ok|failed

This command can be used to connect streaming sources (CameralID) to display
processes (DisplaylID). Display processes may be vimacc® Display instances as
well as vimacc® Workstation instances.

Live as well as playback streams can be used as streaming sources.

Playback streams can be controlled by the streamcontrol command after
connection (see chapter 3.7.3.9).

The videodlg parameter is used to address the number of a video quadrant of the
workstation. Only integer values greater than or equal to 1 are supported.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Parameter contextid is not evaluated but used for logging and returned within the
responses to ensure a better differentiation of the messages received.

The maximum number of video dialogs available and the arrangement in the display
area depend on the vimacc® Display resp. workstation applications used.
Video dialogs are counted from top left to bottom right.

The following figure shows an example of a numbering scheme:

accellence page 16

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Anwendungsfenster Bedienplatz W50 und Standortsicherheit Anwendungsfenster Bedienplatz W50 und Standortsicherheit

Bereich Tool-Bar ‘ ‘ Bereich Tool-Bar ‘

VD 1 VD 2 VD3
v
Bereich Bereich VD6 VD7
Navigation Navigation
VD 4 VD5 VD 6

C o o

Bereich Bereich
Steuerung Steuerung

Bereich Status-Leiste

‘ Bereich Status-Leiste

Figure 3.1: Numbering scheme of the video dialogs of a vimacc Workstation

Example:

e MMS->vimacc:
cmd=show; contextid=778;deviceid=Camera 0001;dest=

AP 1;videodlg=5

vimacc>MMS:
resp=show;contextid=778;deviceid=Camera 0001;dest=
AP 1;videodlg=5;answer=ok

3.7.3.5 Disconnecting Live or Playback Streams

Command:
cmd=clear;contextid=<text>;dest=<DisplayID>;videodlg=<number>;

userdata=<text>

Response:
resp=clear;contextid=<text>;dest=<DisplayID>;videodlg=<number>
;userdata=<text>;answer=ok| failed

This command can be used to terminate the display of live and playback streams.
This operation closes the streaming connection.

Parameter dest defines the ID of the display process, i.e. the ID of a vimacc®
Display instance or vimacc® Workstation instance.

The videodlg parameter is used to address the number of a video quadrant of the
workstation (= command cmd=show). If value 0 is passed here, all video quadrants
are deleted.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is

accellence Page 17

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

transferred as assignment characteristic when the command is logged in the vimacc
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

e MMS->vimacc:
cmd=clear;contextid=778;dest=AP 1;videodlg=5

vimacc>MMS:

resp=clear;contextid=778;dest=AP 1;videodlg=5;answer=ok

3.7.3.6 Defining the Geometry of a vimacc Workstation Instance

Command:
cmd=setworkstationgeometry;dest=<DisplayID>;xpos=<Wert>;ypos=<
Wert>; width=<Wert>;height=<Wert>; showframe=<0]|1>; topmost=<0|1>
;hidden=<0]1>;shownavigation=<0|1>;showcontrols=<0]|1>;title=<t
ext>;contextid=<text>;userdata=<text>

Response:
resp=setworkstationgeometry;dest=<DisplayID>;xpos=<Wert>; ypos=
<Wert>;width=<Wert>;height=<Wert>; showframe=<0|1>; topmost=<0]|1
>;hidden=<0]|1>;shownavigation=<0|1>;showcontrols=<0|1>;title=<
text>;contextid=<text>;userdata=<text>;answer=ok|failed

This command can be used to define the position, size and look of a vimacc
Workstation instance.

The parameters xpos, ypos, width and height define the geometrical
properties of the application window of the vimacc® Workstation instance.

Parameter showframe defines whether the application is shown with or without a
frame.

Parameter shownavigation defines whether the left navigation pane of the
application should be shown.

Parameter showcontrol defines whether the lower area or the control elements of
the application should be shown.

The topmost parameter defines whether the application window should overlay
other windows.

Parameter hidden defines whether the application should be visible or not.

accellence page 15

technoloagies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Parameter title defines the text that should be displayed in the header of the
addressed vimacc® Workstation instance.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is
transferred as assignment characteristic when the command is logged in the vimacc
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Note:

For this command, the parameters xpos, ypos, width, height, showframe,
showcontrols, shownavigation, topmost, hidden and title are optional,
I.e., not all parameters have to be transferred with the command. Command
cmd=setworkstationgeometry;dest=4001;contextid=1234;title=Test
and
cmd=setworkstationgeometry;dest=4001;contextid=1234;hidden=1
are supported.

Example:

MMS->vimacc:
cmd=setworkstationgeometry;dest=4001; xpos=0; ypos=0;width=1024;
height=768; showframe=1; topmost=1;hidden=0; shownavigation=1;sho
wcontrols=<0|1>;titel=Videomodul;contextid=1234

vimacc>MMS:

resp=setworkstationgeometry;dest=4001;xpos=0; ypos=0;width=1024
;height=768; showframe=1; topmost=1; shownavigation=1;showcontrol
s=1;hidden=0;titel=Videomodul;contextid=1234;answer=0k

The following figure shows the standard display mode of a vimacc workstation. This

mode is also wused when the following parameters are received:
showframe=1; shownavigation=1; showcontrols=1;

accellence page 15

c ol oail e

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

-

Pwac: Marvws - et ser (OOA VU Wconurs - et (€04 V5800 Sevwors 1 810

“h 3k

Figure 3.2: vimacc Workstation with frame, navigation pane and control elements

The following figure shows a vimacc® workstation instance after sending the
parameters showframe=1;shownavigation=0;showcontrols=1;

oy Fayer - B et (RTLR-TIEY deot wlbera s - sl DOTLR- T - Byrmers | B 00] I

Lh T mM=EEE W LLs L=

Figure 3.3: vimacc Workstation with frame and control elements but without navigation pane

accellence

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

The following figure shows a vimacc® workstation instance after sending the
parameters showframe=1;shownavigation=0;showcontrols=0;

v Raryer - e var: X VAN e wlbewas - Hinsd: Da-v i - ere | 850

Wt E=Ea

Figure 3.4: vimacc Workstation with frame but without navigation pane and control elements

The following figure shows a vimacc® workstation instance after sending the
parameters showframe=0; shownavigation=0; showcontrols=0;

Figure 3.5: vimacc Workstation without frame, navigation pane and control elements

accellence Page 21

caioe

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3.7 Defining the Arrangement of the Video Dialogs of a vimacc
Workstation Instance

Command:
cmd=setworkstationgrid;dest=<DisplayID>;dialogcount<Wert>|grid
layout=<Layoutname>) ;clearunused=<0]|1:D=0>; contextid=<text>;
userdata=<text>

Response:
resp=setworkstationgrid;dest=<DisplayID>;dialogcount<Wert>|gri
dlayout=<Layoutname>) ;clearunused=<0|1:D=0>;contextid=<text>;u
serdata=<text>; answer=ok|failed

This command can be used to define the arrangement of the vimacc Workstation
instance video dialogs to be displayed.

Parameter dialogcount defines the number of video dialogs shown
simultaneously. Depending on the vimacc® Workstation instance variant installed the
associated layout is selected automatically. Figure 3.1 shows the default layout for
the values dialogcount=6 and dialogcount=12 as an example.

Instead of the dialogcount parameter the gridlayout parameter can be used to
specify the desired layout of the video dialogs. Depending on the vimacc®
Workstation instance variant installed different layouts can be selected. By using the
gridlayout parameter, arrangements can be selected that cannot be uniquely
defined by simply specifying the number of dialogs. For example, gridlayout=2x3
selects a two or three line layout which could not be clearly defined by simply
specifying dialogcount=6. Figure 3.6 displays further possibilities for arranging
video dialogs.

Figure 3.6: vimacc Workstation layouts: "3+2" and "5+1"

The maximum number of video dialogs that can be shown also depends on the
installed variant of the vimacc® Workstation instance. Usually, vimacc® Workstation
instances can display up to 24 video dialogs simultaneously.

Parameter clearunused defines whether existing connections that are no longer
visible after switching to the desired layout should be terminated.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is passed as

accellence page 22

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

assignment characteristic when the command is logged in the vimacc®
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

MMS->vimacc:
cmd=setworkstationgrid;dest=1071;dialogcount=6;clearunused=1;c
ontextid=1234;userdata=test

vimacc>MMS:
resp=setworkstationgrid;dest=1071;dialogcount=6;clearunused=1;
contextid=1234;userdata=test;answer=ok

MMS->vimacc:
cmd=setworkstationgrid;dest=1071;gridlayout=2x3;clearunused=1;
contextid=1234;userdata=test

vimacc>MMS:
resp=setworkstationgrid;dest=1071;gridlayout=2x3;clearunused=1
;contextid=1234;userdata=test;answer=ok

3.7.3.8 Defining the Presentation within the Video Dialogs of a
Workstation Instance

Command:
cmd=setworkstationscalemode;dest=<DisplayID>;cmdparam=<ZOOM|FI
T|KEEP>; contextid=<text>;userdata=<text>

Response:
resp=setworkstationscalemode;dest=<DisplayID>;cmdparam=<ZOOM|F
IT|KEEP>; contextid=<text>;userdata=<text>; answer=ok|failed

This command can be used to define the scaling behaviour of the video dialogs of a
vimacc®Workstation instance.

The size of the individual video dialogs of a vimacc® Workstation instance depends
on the application's window size which can be changed by the user but is limited by
the maximum resolution of the output screen. Thus, the resulting side ratio of the
video dialogs may change in such a way that it does no longer correspond to the side
ratio of the transmitted video stream.

Command setworkstationscalemode can be used to define how the video
image of the connected stream should be displayed in the video dialog.

accellence page 23

technologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

The following values can be passed for the cmdparam parameter:
e KEEP Keeps the image side ratio of the video stream.

The video stream is displayed in the video dialog without changing its image
side ratio. Thus, depending on size and side ratio of the dialogs, the stream
might have black borders.

e 700M Zooms to the size of the video dialog.

The video image is scaled in such a way that it fits into the video dialog
without showing any black borders. However, image areas might have been
cut.

e 700M Adjusts to the size of the video dialog.

The video image is horizontally or vertically scaled so that it fills the whole
video dialog. Depending on the side ratio of the video dialog the video image
might be more or less distorted.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is
transferred as assignment characteristic when the command is logged in the vimacc
documentation layer.

Parameter userdata Iis not evaluated but returned within the responses to ensure
a better differentiation of the messages received.

Example:

MMS->vimacc:
cmd=setworkstationscalemode;dest=1071; cmdparam=KEEP; contextid=
1234;userdata=test

vimacc>MMS:
resp=setworkstationscalemode;dest=1071;cmdparam=KEEP;contextid
=1234;userdata=test;answer=ok

3.7.3.9 Controlling a Playback Stream

Command:
cmd=streamcontrol;mode=playback;dest=<DisplayID>;streamcmd=<st
art | pause | speed | posu | posa | posr | stfw | strw |

pint>; cmdparam=<parameter>;contextid=<text>;userdata=<text>

Response:

accellence page 24

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

resp=streamcontrol;mode=playback;dest=<WorkstationId>; streamcm
d=<start | pause | speed | posu | posa | posr | stfw | strw |
pint>; cmdparam=<parameter>;contextid=<text>;userdata=<text>;an
swer=ok| failed

The playback stream is always controlled via the control of the vimacc® Display
respectively Workstation instance to which the stream is connected by using the
show command (see chapter).

As the vimacc® Display resp. Workstation instances always synchronize the
playback streams currently connected, control command streamcontrol always
effects all playback streams of the controlling instance. (Therefore, no video dialog
number is specified for this command.)

Parameter dest defines the vimacc® ID of the display respectively workstation
instance to be controlled.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is
transferred as assignment characteristic when the command is logged in the vimacc
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

The respective control command is defined by using the streamcmd parameter.
Valid keywords for this parameter are:

e start Starts the playback

Optionally, the cmdparam parameter can be used to specify the speed in a
range from -500 to +500. The default speed value +100.
A positive value means that the stream is played in normal direction, a
negative values means that the stream is played in reverse direction,
€.g. streamcmd=start; cmdparam=200 play forward with

double speed

streamcmd=start; cmdparam=-200 play backward with
double speed
e pause Pauses the playback.

A still image is displayed if there is an image at the current position. Playback
should be paused when searching with the position slider.

e speed Sets the playback speed.
For parameter cmdparam a speed value between -500 and +500 is

expected. The default speed value is +100.
A positive value means that the stream is played in normal direction, a

accellence page 25

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

negative values means that the stream is played in reverse direction,
e posu Subscribes to the position update every x milliseconds.

For parameter cmdparam a specified interval <intervall ms>

is expected.
In the events data point of the vimacc® Display resp. Workstation instance

(see chapter 3.7.3.20) the current playback position is reported every x
milliseconds

Notes:
A value that is too low results in a high number of messages!

e posa Move to a specific time position.

For parameter cmdparam a specified UTC time stamp is expected in the
yyyy-MM-dd'T'hh:mm: ss.zzz notation.

e posr Relative positioning

For parameter cmdparam an offset in the form of Seconds.Milliseconds
is expected (ss.zzz).

o stfw Single image forward

This command only makes sense when the state is Pause.
o stfw Single image backward

This command only makes sense when the state is Pause.
e pint <0|1> Activates/deactivates pause interpretation

For parameter cmdparam a value of O or 1 is expected.
1: Show pauses at correct time
0: Skip pauses

Example:

e MMS-vimacc:
cmd=streamcontrol;mode=playback;dest=1071;contextid=1234;

userdata=test;streamcmd=start; cmdparam=500

vimacc>MMS:
resp=streamcontrol;mode=playback;dest=1071;contextid=1234
;userdata=test;streamcmd=start; cmdparam=500; answer=o0k

e MMS-vimacc:
cmd=streamcontrol;mode=playback;dest=1071;contextid=1234;
userdata=test;streamcmd=posa;cmdparam=2014-04-

accellence page 26

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

02T11:17:37.000

vimacc>MMS:
resp=streamcontrol;mode=playback;dest=1071;contextid=1234
;userdata=test;streamcmd=posa;cmdparam=2014-04-
02T11:17:37.000;answer=ok

3.7.3.10 Controlling a PTZ camera

Command:

cmd=<move |iris|focus>;<keyword>=<% speed>[;>;<keyword>=<%
speed>..] ;contextid=<text>;userdata=<text>;source=<CameralD>|ir
is| focus

Response:

resp=<move |iris| focus>;<keyword>=<% speed>[;>;<keyword>=<%
speed>..] ; contextid=<text>;userdata=<text>;source=<CameralD>;an
swer=ok|failed

In case of control commands for moving the PTZ mechanism of a PTZ camera, the
ID of the respective camera has to be passed in the source parameter.

It is possible to specify movements for different axes at the same time which have to
be separated by a semicolon.

In addition, commands not implemented in the respective camera can be executed.
E.g. it might be possible that a camera does not support an automatic aperture
control (see below). In this case, the command executed by vimacc® would not have
any effect. However, using the interface described here the executed command
would be positively acknowledged nevertheless.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is passed as
assignment characteristic when the command is logged in the vimacc®
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Valid keywords for the <keyword>parameter of command move are:
e up pan up
e down pan down
o left pan left
e right pan right
e zoomin zoomin
e zoomout zoom out

The command is always followed by the speed ranging from 0 % to 100 %,

accellence page 27

c o foail e

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

e.g. up=80

e preset Move to preset position
The command is followed by the number of the preset position.

e stop Stop camera movement
The cmd=move; stop=1 command sends all keywords of the command with
the O value, except for preset. Thus, this command string corresponds to the
following command string:

cmd=move;up=0;left=0;down=0; right=0; zoomIn=0; zoomout=0

Valid keywords for the <keyword> parameter of the command iris are:
e start manual aperture setting

The command is followed by the speed ranging from -100 % to +100 %
(start >0 open aperture, start <0 close aperture), e.g. start=-80

e auto=1 Changes to Auto mode

e stop=1 Stops aperture movement

Valid keywords for the <keyword>parameter of the command focus are:
e step Focus step by step

The command is followed by the number of steps to be executed.
e start Changes to Auto mode

The command is followed by the speed, ranging from 0% to 100 %,
e.g. start=-70

e stop=1 Stops focussing
Example:
¢ MMS->vimacc:
cmd=move;up=75;contextid=1234;source=Camera 0001

vimacc>MMS:
resp=move;up=75;contextid=1234; source=Camera 0001;answer=
ok

e MMS-vimacc:
cmd=move;up=20; left=45;down=20;contextid=1234; source=Came

ra 0001

vimacc>MMS:

accellence page 20

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

resp=move; up=20;1left=45;down=20; contextid=1234; source=Cam
era 0001;answer=ok

e MMS->vimacc:

cmd=move;stop=1;contextid=1234;source=Camera 0001

vimacc>MMS:

resp=move; stop=1;contextid=1234;source=Camera 0001;answer
=ok

¢ MMS->vimacc:

cmd=iris;start=50;contextid=1234;source=Camera 0001

vimacc>MMS:
resp=iris;start=50;contextid=1234;source=Camera 0001;answ
er=ok

e MMS-vimacc:
cmd=iris;stop=1;contextid=1234;source=Camera 0001

vimacc>MMS:
resp=iris;stop=1;contextid=1234;source=Camera 0001;answer
=ok

e MMS->vimacc:
cmd=focus; start=50;contextid=1234; source=Camera 0001

vimacc>MMS:
resp=focus;start=50;contextid=1234;source=Camera 0001;ans
wer=ok

e MMS->vimacc:
cmd=focus; stop=1;contextid=1234; source=Camera 0001

vimacc>MMS:
resp=focus;stop=1;contextid=1234;source=Camera 0001;answe
r=ok

3.7.3.11 Querying Configured Cameras

Command:
cmd=getcameralist;metainfo=<0]|1>;userdata=<text>

Response:

resp=getcameralist;metainfo=<0]|1>;userdata=<text>;answer=ok, pa
rameterlist{\r\nname=<name#1>\;1d=<id#1>\;metainfo=<metainfo#l
>>\r\n...name=<name#n>\;id=<id#n>\;metainfo=<metainfo#n>>\r\n}

This command can be used to query the list of cameras configured within the
vimacc® system.

accellence Page 20

technoloaglioes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Parameter metainfo defines whether the response should contain the metadata
stored for the device.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

For each configured camera a line in the form of
name=Kamera-Name; id=Kamera-Id

or
name=Kamera—-Name; id=Kamera-Id;metainfo=Kamera-Metainfos

is returned with the response text.

Example:
MMS->vimacc:
cmd=getcameralist;metainfo=0;userdata=1234

vimacc>MMS:
resp=getcameralist;userdata=1234;answer=o0k,parameterlist{\r\nn
ame=cameraName#1\; id=cameraId#1\r\n

name=cameraName#2\; id=cameralId#2\r\n}

3.7.3.12 Querying Available Playback Streams

Command:
cmd=getplaybacklist;mediatype=<video|audio>;userdata=<text>

Response:
resp=getplaybacklList;mediatype=<video|audio>;userdata=<text>;a
nswer=ok|failed,parameterlist{\r\nid=<id#1>;name=<name#1>;medi
atype=<type>;definition parameter=<text#1l>;function=<function#
1>;merge=<merge#l>;privacy=<privacy#l>;associations=<associati
ons#1>\r\n .. id=<id#n>;name=<name#n>;...\r\n}

This command can be used to query the list of playback streams available within the
vimacc® system.

The mediatype parameter defines the type of streams to be queried. The video
value only queries video streams, the audio value only queries audio streams. If
several media types should be queried, the respective mediatype values are
separated by a comma (',").

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

For each available playback stream a line in the form of

accellence page 2

¢ ol oaioe

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

1d=<id>;name=<name>;mediatype=<type>;definition parameter=<tex
t>; function=<function>;merge=<mergelD>;privacy=<privacy>;
associations=<associations>

Is returned whereby not all of the parameters have to be used.
The following information is returned:

o id:
ID for a unique reference to the playback stream.

L name.
The name of the playback stream. This usually is the name of the camera (or
device) that recorded the stream.

e mediatype:
The media type of the playback stream, i.e. video or audio.

e definition parameter
This parameter returns system specific configuration parameters specified
during the configuration of the camera (resp. devices) that recorded the
stream. The values are automatically transmitted to the playback stream by
vimacc®.

e function:
This parameter returns the system specific configuration parameter of the
function data field that has been specified during the configuration of the
camera (resp. the devices) that recorded the stream. The values are
automatically transmitted to the playback stream by vimacc.

e merge:
This parameter returns the system specific configuration parameter of the
merge data field that has been specified during the configuration of the
camera (resp. the devices) that recorded the stream. The values are
automatically transmitted to the playback stream by vimacc®.

Data field merge is used to mark associated playback tracks so that the
AccVimaccServer can ('merge') respective data when the stream is
retrieved.

This is e.g. useful when a regular archive recording with low refresh rate and
an alarm recording with high refresh rate have been enabled for a camera.
When the AccVimaccServer then retrieves the stream of a camera, it loads
and combines both tracks and preferably plays the part with the higher refresh
rate.

e privacy:
This parameter returns the system specific configuration parameter of the
privacy data field that has been specified during the configuration of the
camera that recorded the stream. The values are automatically transferred to

accellence page 31

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

the playback stream by vimacc® and return the private zones configured for
this camera.

associations:

This parameter returns the system specific configuration parameter of the
associations data field that has been specified during the configuration of
the camera (resp. the devices) that recorded the stream. The values are
automatically transferred to the playback stream by vimacc®
and return the channels associated with this channel.
Such an association might be an audio channel assigned to a video channel.

Example:
MMS->vimacc:
cmd=getplaybacklist;mediatype=video;userdata=1234

vimacc>MMS:
resp=getplaybacklist;mediatype=video;userdata=1234;answer=0k,p
arameterlist {
id=Showroom;mediatype=video;name=Showroom; function=PTZ, EMA
id=autobahn;mediatype=video;definition parameter=playbackonly\

=true

1id=cam0002;mediatype=video;definition parameter=hidefromtopolo

gy\=1

id=cam0116 archiv;mediatype=video;name=Aussenhaut/Tor/Nord; fun
ction=FIX, Tor,Aussenhaut;merge=cam0l16 prealarm

}

accellence page 3

ol oail e

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3.13 Querying Playback Sessions of a Playback Stream

Command:
cmd=getplaybacksessionsforplaybackid;playbackid=<id>;userdata=
<text>

Response:
resp=getplaybacksessionsforplaybackid;playbackid=<id>;userdata
=<text>;answer=ok|failed, parameterlist{\r\n
sessionid=<id#1>\;sessionname=<sessionname#l1>\;controller=<con
troller#1>\;port=<port#l1>\r\n ..
sessionid=<id#1>\;sessionname=<sessionname#l1>\;controller=<con
troller#1>\;port=<port#l1>\r\n}

This command can be used to query the list of the playback sessions of a vimacc®
playback stream.

vimacc® can record audio and video data on multiple servers. For example, in case
of a server failure for a system with redundant servers, the recording is automatically
continued on the redundant server. As a result, the content has to be loaded from
two different servers when the recorded stream should be played. To assign the
individual parts to a certain playback stream, so called sessions are used which are
uniquely determined by an ID as well as the name and IP port of the recording
server.

The sessions of a specific playback stream can be retrieved by using the
getplaybacksessionsforplaybackid command whereby the playbackid
parameter specifies the ID of the playback stream and thus references the clip to be
played.

The list of available playback streams can be retrieved by using the
getplaybacklist command (see chapter 3.7.3.12).

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

For each available playback session a line in the form of

sessionid=<id>\;sessionname=<sessionname>\;controller=<control
ler>\;port=<port>

is returned whereby not all of the parameters have to used.

The following information is returned:
e sessionid:
ID for a unique reference to the playback session.

e sessionname:
The name of the playback session.

accellence page 53

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

e controller
The name of the recording server providing this playback session.

e port:
The IP port used to retrieve the associated stream from the recording server.

Note:

This command is relevant only when a playback stream is retrieved by a playback
object that directly communicates with the vimacc® recording servers via TCP/IP and
retrieves the streams itself. One example for this is an autonomic vimacc® video
widget (for an implementation sample see the EWO video at WinCC OA).

An autonomic video widget is not subjected to the vimacc® Rights Management as it
is not connected to the central vimacc® configuration.

However, in a vimacc® system, the playback streams are only referenced with the ID
of the stream and the vimacc® objects retrieve the different parts from the recoding
servers autonomously.

Example:

MMS->vimacc:
cmd=getplaybacksessionsforplaybackid;playbackid=cam0230;userda
ta=1234

vimacc>MMS:
resp=getplaybacksessionsforplaybackid;playbackid=cam0230;userd
ata=1234;answer=o0k, parameterlist {
sessionid=114;sessionname=REC1 PREALARM;controller=laptop-
heinrich;port=9371

}

3.7.3.14 Querying the Time Limits of a Playback Stream

Command:
cmd=getstreaminfo;playbackid=<playbackid>;userdata=<text>

Response:
resp=getstreaminfo;playbackid=<playbackid>;userdata=<text>;ans
wer=ok|failed;begintime=<utc timestamp iso 8601: yyyy-MM-
dd'T'hh:mm:ss.zzz>;endtime=<utc timestamp iso 8601: yyyy-MM-
dd'T'hh:mm:ss.zzz>

This command can be used to query the limits of a playback stream. Here, the
absolute points in time for the beginning and the end of the stream are determined. If
the recorded content is stored on several recording servers, the limits for the entire
content are determined.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

accellence page 54

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Parameter playbackid defines the ID of the playback stream whose limits should
be determined.

The limits determined are returned as UTC (Coordinated Universal Time) time
stamps in the following format yyyy-MM-dd'T'hh:mm:ss.zzz.

Example:
MMS->vimacc:

cmd=getstreaminfo;playbackid=cam0231 archiv;userdata=test

vimacc>MMS:

resp=getstreaminfo;playbackid=cam0231 archiv;userdata=test;ans
wer=ok;begintime=2014-04-01T11:42:19.246;endtime=2014-04-
01T11:52:26.196

accellence Page 35

technologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3.15 Querying the Timeline of a Playback Stream

Command:
cmd=getstreamtimeline;playbackid=<playbackid>;userdata=<text>

Response:
resp=getstreamtimeline;playbackid=<playbackid>;userdata=<text>
;answer=ok|failed, parameterlist{\r\n
begintime=<timestamp>;endtime=<timestamp\r\n

begintime=<timestamp>;endtime=<timestamp\r\n
begintime merged=<timestamp>;endtime merged=<timestamp\r\n

begintime merged=<timestamp>;endtime merged=<timestamp

\r\n}

This command can be used to query the entire timeline of a playback stream. A so
called timeline may consist of several related time ranges with different pause times
in between.

This commands differentiates from the getstreaminfo command (see chapter
3.7.3.14) as follows: All related parts of the playback stream are determined and not
only the limits of the entire time range are returned.

If the recorded content is stored on multiple recording servers, the time ranges are
determined on all servers and all ranges found are returned.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Parameter playbackid defines the ID of the playback stream whose limits should
be determined.

The limits determined are returned as UTC (Coordinated Universal Time) time
stamps in the following format yyyy-MM-dd'T'hh:mm:ss.zzz.

For each related time range a line in the form of
begintime=<timestamp>\;endtime=<timestamp>\r\n
and/or
begintime merged=<timestamp>\;endtime merged=<timestamp>\r\n
is returned in the response text.

The ranges defined by begintime and endtime describe ranges in which
recorded material has been found on the recording servers.

The ranges defined by begintime merged and endtime merged describe
ranges in which recorded material has been found in further recording tracks. This
e.g. applies to video recordings stored in the respective alarm recording track due to
an alarm event.

accellence page 36

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

As usually only one timeline is displayed when a stream is played in an application
with user interface, the gathered information can be used to differentiate parts of an
archive recording from parts of an alarm recording e.g. by colour.

Note:

This command puts a higher load on the recording servers as the getstreaminfo
command (see chapter 3.7.3.14). Thus, if only the outer limits of a stream should be
determined, command getstreaminfo has to be used.

Example:
MMS->vimacc:

cmd=getstreamtimeline;playbackid=cam0231 archiv;userdata=test

vimacc>MMS:

resp=getstreamtimeline;playbackid=cam0231 archiv;userdata=test
;answer=ok;parameterlist
{\r\nbegintime=2014-04-01T11:42:19.246\;endtime=2014-04-
01T12:49:38.727\r\n

begintime merged=2014-04-01T11:50:51.197\;endtime=2014-04-
01T11:55:26.196\r\n}

3.7.3.16 Querying the Configured Monitors of the vimacc System

Command:
cmd=getmonitorlist;metainfo=<0]|1>;userdata=<text>

Response:
resp=getmonitorlist;metainfo=<0|1>;userdata=<text>;answer=o0k,p
arameterlist{\r\nname=<name#l>;id=<id#1><;metainfo=<metainfo#l
>>\r\n...name=<name#n>; id=<id#n><;metainfo=<metainfo#n>>\r\n}

This command can be used to query the list of Display instances configured within
the vimacc® system.

Parameter metainfo defines whether the response should contain the metadata
stored for the device.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

For each configured Display instance a line in the form of
name=Display-Name;id=Display-Id

or
name=Display-Name;id=Display-Id;metainfo=Display-Metainfos
is returned with the response text.

Example:

accellence page 37

e chnologloes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

MMS->vimacc:

cmd=getmonitorlist;metainfo=0;userdata=1234

vimacc>MMS:
resp=getmonitorlist;metainfo=0;userdata=1234;answer=ok, paramet
erlist{\r\nname=displayName#1\;id=displayId#l\r\nname=displayN
ame#2\;id=displayId#2\r\n}

3.7.3.17 Querying the Configured Workstation Instances of the
vimacc System

Command:
cmd=getworkstationlist;metainfo=0|1;userdata=<text>

Response:
resp=getworkstationlist;metainfo=<0]|1>;userdata=<text>;answer=
ok,parameterlist{\r\nname=<name#l>;id=<id#1>\;metainfo=<metain
fo#1>>\r\n...name=<name#n>\; id=<id#n>\;metainfo=<metainfo#n>>\
r\n}

This command can be used to query the list of workstation instances configured
within the vimacc® system.

Parameter metainfo defines whether the response should contain the metadata
stored for the device.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

For each configured workstation instance a line in the form of
name=Workstation-Name\; id=Workstation-Id

or

name=Workstation-Name\; id=Workstation-Id\;metainfo=Workstation
-Metainfo

is returned with the response text.

Example:
MMS->vimacc:
cmd=getworkstationlist;metainfo=0;userdata=1234

vimacc>MMS:
resp=getworkstationlist;metainfo=0;userdata=1234;answer=okpara
meterlist{\r\nname=AP#1\;id=workstationId#l\r\nname=
AP#2\;i1d=workstationId#2\r\n}

3.7.3.18 Querying the Configured Scenarios of the vimacc System

Command:

accellence Page 38

technologioes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

cmd=getscenariolist;userdata=<text>

Response:
resp=getscenariolist;userdata=<text>;answer=ok,parameterlist{\
r\nname=<name#1>\;id=<id#1>\r\n...name=<name#n>\;<id>=<id#n>\r

\n}

This command can be used to query the scenarios configured within the vimacc®
system.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

For each configured scenario a line in the form of name=Szenario-
Name; id=Szenario-Id is returned with the response text.

Example:
MMS->vimacc:
cmd=getscenariolist;userdata=1234

vimacc>MMS:
resp=getscenariolist;userdata=1234;answer=o0k,parameterlist{\r\
nname=Szenario#l\;id=SzenarioId#l\r\nname=Szenario#2\;id=Szena
rioId#2\r\n}

3.7.3.19 Requesting Status Information from vimacc Devices

Command:
cmd=subscribedevicestatus; function=<text>;userdata=<text>

Response:
resp=subscribedevicestatus; function=<text>;userdata=<text>;ans
wer=ok|failed

Status message:
resp=devicestatus;userdata=<text>;deviceid=<deviceid>;property
=<property>;content=<status text>

This command can be used to subscribe to changes to the status information of the
vimacc® device types.

Within a vimacc® system, devices are always parameterized with one or more
function identifiers.
Identifiers might be:

e PTZ or FIX for PTZ resp. Fix cameras

e HID for human interface devices

e SERVER for vimacc®streaming servers

e WORKSTATION for vimacc®Workstation instances

accellence page 3

technoloagies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

e etc.

The function parameter in this command defines the device type from which the
status information is requested.

If multiple device types should be subscribed, the respective function values have
to be separated from each other by a comma (',').

Each call of subscribedevicestatus overrides previous calls of this command.

Entry function=none terminates the transmission of status information.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

After successful execution of this command the status information of all respective
device types are sent to the MSS with status message resp=devicestatus once.
Further status messages resp=devicestatus are only sent to the MMS when the
status of a subscribed vimacc® device has changed.

Note:

Depending on the number of configured vimacc® devices there may be a large
number of status changes within the vimacc® system. Transferring all status
information to the controlling instances could result in a very high network load.

To ensure that such a load is not generated accidentally, entry function=all has
been omitted and all device types to be subscribed to have to be explicitly specified.

Note:

This command must be used very carefully. vimacc® is a dynamic system where
each device immediately publishes its status changes. In case of systems with a high
number of devices (e.g. several hundred video cameras), a thoughtless subscribing
to status messages may lead to a very high number of messages from the control
interface. In this case, the number of subscribed messages should be restricted by
selecting the right function parameter.

accellence Page 40

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Example:
¢ MMS->vimacc:

cmd=subscribedevicestatus; function=PTZ,FIX;userdata=789

vimacc>MMS:
resp=subscribedevicestatus; function=PTZ,FIX;userdata=789;
answer=ok

vimacc>MMS (spontaneous status change):
resp=devicestatus;userdata=789;deviceid=1001;property=str
eaming; content=video\=0k

3.7.3.19.1 Status Information from vimacc Devices

Information about the status of vimacc® devices are usually divided into several
sections that are returned with the property=<property> parameter in each case.
The returned content=<status text> parameter then contains the actual status
information in text form.

Status information from vimacc® devices are amongst others presented by using the
control, streaming, recording, function and availability sections,
whereby not all of them have to be used for each device type.

In case of a vimacc® Workstation instance (function=WORKSTATION), e.g. entry
recording always contains the content state=off as recording connections from
the workstation instance to the recording servers are never established.

Possible Parameters are:

e control:
Displays the status of device control.

e streaming:
Displays the status of streaming connections.

e recording:
Displays the status of recording connections.

e function:
Displays the functions supported by the device.

e availability:
Displays whether a device is available. Availability in this context defines
whether the device was found in the system database, initialized by the
respective vimacc® software component and registered to the vimacc®
system. Whether the device can be accessed correctly can be determined
from additional status information like control, streaming Or recording
(see above).

accellence page 41

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3.19.2 Status Information Reported by Cameras

In the following, an example of the status information referring to a camera is given:

control:
If the connection to the controlling instance could be established, the

associated status message for a certain camera reads as follows:
resp=devicestatus;userdata=5678;deviceid=cam0230;property
=control;content=state\=o0k

streaming:
If the streaming connection could be established, the associated status

message for a certain camera reads as follows:
resp=devicestatus;userdata=5678;deviceid=cam0230;property
=streaming;content=video\=0k

If the streaming connection was terminated due to a network error, the

associated status message reads as follows:
resp=devicestatus;userdata=5678;deviceid=cam0230;property
=streaming;content=video\=disconnected

Then, vimacc® periodically tries to re-establish the connection to the camera.

Thus, the following messages may be shown in alternation.
resp=devicestatus;userdata=5678;deviceid=cam0230 prealarm
;property=streaming;content=video\=no rtp

resp=devicestatus;userdata=5678;deviceid=cam0230 prealarm
;property=streaming; content=video\=pending

As soon as the connection could be re-established, the following message

appears:
resp=devicestatus;userdata=5678;deviceid=cam0230;property
=streaming;content=video\=o0k

recording

The associated status message for a certain camera is:
resp=devicestatus;userdata=5678;deviceid=cam0230;property
=recording;content=REC1 PREALARM@localhost\=start prealar
m 0 3600

function:

The associated status message for a certain camera is:
resp=devicestatus;userdata=5678;deviceid=cam0230;property
=function;content=PTZ, EMA

availability:

The associated status message for an available camera is:
resp=devicestatus;userdata=5678;deviceid=cam0230;property
=availability;content=ok

For a camera that is no longer available the message is:
resp=devicestatus;userdata=5678;deviceid=cam0230;property
=availability;content=not ok

accellence page 42

ol oail e

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3.20 Requesting Event Information from vimacc Devices

Command:
cmd=subscribeevents; function=<text>;userdata=<text>

Response:
resp=subscribeevents; function=<text>;userdata=<text>;answer=ok
| failed

Event message:
resp=event;deviceid=<deviceid>;property=<property>;content=<ev
ent text>

This command can be used to subscribe to alarms resp. events of vimacc® devices.
As soon as an event of a subscribed vimacc® device is detected, it is routed as
message resp=event to the MMS.

The function parameter in this command defines the device type from which the
event information is requested (= see command subscribedevicestatus).

If multiple device types should be subscribed, the respective function values have
to be separated from each other by a comma (',").

Each call of subscribedevicestatus overrides previous calls of this command.

Entry function=all can be used to subscribe to the event messages of all devices
within the vimacc system.

Entry function=none terminates the transmission of event information.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

¢ MMS->vimacc:
cmd=subscribedevicestatus; function=PTZ,FIX;userdata="7

vimacc>MMS:
cmd=subscribeevents; function=PTZ,FIX;userdata="7;answer=ok

vimacc>MMS (spontaneous event):
resp=event;userdata=7;deviceid=4001;property=deviceup;con
tent=true

accellence page 4

¢ ol oaioe

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3.20.1 Event Information Reported by vimacc Devices

Event information from vimacc® devices are not standardised as they vary
depending on the device class.

As with the status information, the different parts are returned with the
property=<property> parameter.

The returned content=<event text> parameter then contains the actual event
information in text form.

3.7.3.20.2 Event Information Reported by Workstation Instances
In the following, some possible events of vimacc® Workstation instances are listed.

deviceup:

The workstation instance is started. The associated message is:
resp=event;userdata=5678;deviceid=401;property=deviceup;conten
t=true

playback:

The workstation instance uses this event to report the playback status of one or more
streams. As a result, the user can determine the current playback position, whether a
playback is started or stopped and the time range covered by the connected
playback streams. As playback streams are always synchronised this information is
valid for all connected playback streams.

The associated message is:
resp=event;userdata=5678;deviceid=401;property=playback;conten
t=streaming 100 3605364223097 3605356915780 3605412483511

dialogs/VD<dialognummer>

The workstation instance uses this event to report the stream connected to the
respective video dialog, its status and whether it is a live or playback stream.

The associated message is:
resp=event;userdata=5678;deviceid=401;property=dialogs/VD1l;con
tent=1live streaming cam0231 prealarm

alarmhandling:
Displays information about the handling of alarms at a workstation instance.
Parameter status in <event text> specifies the alarm handling type.

If e.g. an alarm is triggered at a vimacc® Workstation by a user or by connecting an
alarm scenario (->command showscenario), the respective message is a follows:

accellence page 44

e chnologloes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

resp=event;userdata=5678;deviceid=401;property=alarmhandling;c
ontent=status\\\=created\\\;alarmid\\\=APLaptop-Heinrich 2013-
07-09 10:59:07 Uhr\\\;timestamputc\\\=2013-07-09T08:59:07.665

If an alarm is accepted by a user at a vimacc® Workstation, the following message
appears:
resp=event;userdata=5678;deviceid=401;property=alarmhandling;c
ontent=status\\\=accepted\\\;alarmid\\\=1234\\\; timestamputc\\
\=2013-07-09T09:48:58.866

In case of an alarm terminated at a vimacc Workstation, the following message
appears:
resp=event;userdata=5678;deviceid=401;property=alarmhandling;c
ontent=status\\\=finished\\\;alarmid\\\=APLaptop-Heinrich
2013-07-09 10:59:07 Uhr\\\;timestamputc\\\=2013-07-
09T09:36:54.406

3.7.3.21 Requesting Status Information from Playback Streams

Command:
cmd=subscribeplaybackstatus;mediatype=<video|audiolall>;userda
ta=<text>

Response:
resp=subscribeplaybackstatus;mediatype=<video|audiolall>;userd
ata=<text>;answer=ok|failed

Status message:
resp=playbackstatus;playbackid=<playbackid>;property=<property
>;content=<status text>

This command can be used to subscribe to changes to the status information of
vimacc® playback streams.

The mediatype parameter in this command defines the media type from which the
status information should be requested. For the vimacc® system the media types
video and audio are available.

If multiple media types should be subscribed, the respective values have to be
separated from each other by a comma (',").

Each call of subscribeplaybackstatus overrides previous calls of this
command.

Entry mediatype=none terminates the transmission of status information.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

accellence Page 45

technologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

After successful execution of this command the status information of all respective
media types are sent to the MSS with status message resp=playbackstatus
once.

Further resp=playbackstatus status messages are only sent to the MMS when
the status of a subscribed vimacc® playback stream has changed.

Note:

When switching to redundancy mode, e.g. the entry for the associated playback
sessions changes and this change is indicated by the playbacksessions status
property and content changed. In this case, the list of the respective playback
sessions has to be retrieved again by using the
getplaybacksessionsforplaybackid (see chapter 3.7.3.13) command.

Example:
¢ MMS->vimacc:
cmd=subscribeplaybackstatus;mediatype=video;userdata=789

vimacc>MMS:
resp=subscribeplaybackstatus;mediatype=video;userdata=789
;answer=ok

vimacc>MMS (spontaneous status change):
resp=playbackstatus;userdata=789;playbackid=tankstelle;pr
operty=streaming;content=video\=o0k

3.7.3.21.1 Status Information from Playback Streams

Information about the status of vimacc® playback streams are usually divided into
several sections that are returned with the property=<property> parameter in
each case.

The returned content=<status text> parameter then contains the actual status
information in text form.

Status information from vimacc® devices are amongst others represented using the
control, streaming, recording, function and availability sections,

whereby not all sections have to be used for each device type.
Possible Parameters are:

e control:
Displays the status of the device control.

e streaming:
Displays the status of streaming connections.

e recording:
Displays the status of recording connections.

accellence page 46

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

e function:
Displays the functions supported by the device.

e availability:
Displays whether a playback stream is available.

e playbacksessions:
If this parameter contains the status text changed, the list of the playback
sessions of a stream was modified by the recording servers.

3.7.3.22 Requesting Status Information from the vimacc System

Command:
cmd=subscribesystemstatus;userdata=<text>;activate=<0]|1>

Response:
resp=subscribesystemstatus;userdata=<text>;activate=<0|1>;answ
er=ok|failed

Status message:
resp=systemstatus;userdata=<text>;property=<property>;content=
<status text>

This command can be used to subscribe to changes to the status information of the
vimacc system.
Examples for system information:

Information about vimacc® computers that cannot be reached
Information about vimacc® services that cannot be reached
Information about cameras not working

Information about incorrect or insufficient licences

etc.

Parameter activate is used to subscribe to/unsubscribe from status information.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

After successful execution of this command the status information of the
vimacc®system are sent to the MMS with the status message
resp=systemstatus.

Further resp=systemstatus status messages are only sent to the MMS when the
system status has changed.

Example:

e MMS-vimacc:
cmd=subscribesystemstatus;userdata=789;activate=1

accellence page 47

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

vimacc>MMS:

resp=subscribesystemstatus;userdata=789;activate=1;answer
=ok

vimacc>MMS (spontaneous event):
resp=systemstatus;userdata=789;property=devices;content=s
tate\=error\;source\=cam2001, cam2002"

3.7.3.22.1 Reported Status Information of the vimacc System

Information about the status of the vimacc® system are also divided into several
parts that are returned with the property=<property> parameter in each case.
The returned content=<status text> parameter then contains the actual status
information in text form.

The following information is returned:

availability:

Displays whether the overall status of the vimacc® system could be
determined.

If the relevant information is not available, the following message is sent:
resp=systemstatus;userdata=1234;property=availability;con
tent=not ok

As soon as the relevant information is available, the following message is
sent:
resp=systemstatus;userdata=1234;property=availability;con
tent=o0k

system:
Displays the overall status of the vimacc system. If there is no error, the

respective message reads as follows:
resp=systemstatus;userdata=1234;property=system;content=s
tate\=ok

If an error was detected, the affected areas are listed in the source
parameter. The list of devices that reported an error is then also transferred
via a status message with the respective property parameter.

The following example shows a message that is displayed when errors are
detected in the services and devices areas:

resp=systemstatus;userdata=1234;property=system;content=s
tate\=error\; source\=services,devices

devices:

Displays the overall status of vimacc® devices like cameras or HID controller
(e.g. for joysticks). Workstation and Display instances are not included here,
instead the data is transmitted in separated messages.

Faulty devices are output in a comma separated list within the source
parameter.

accellence page 49

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

The respective message is as follows (example):
resp=systemstatus;userdata=1234;property=devices;content=
state\=error\;source\=4000,cam0231b archiv,cam0231b preal
arm,cam0232 archiv,cam0232 prealarm

e displays:
Displays the overall status of the configured vimacc® Display instances.
Faulty Display instances are output in a comma separated list within the
source parameter.

The respective message is as follows (example):
resp=systemstatus;userdata=1234;property=displays;content

=state\=o0k

e workstations:
Displays the overall status of the configured vimacc® Workstation instances.
Faulty Workstation instances are output in a comma separated list within the
source parameter.

The respective message is as follows (example):
resp=systemstatus;userdata=1234;property=workstations;con
tent=state\=ok

If none of the configured vimacc® Workstation instances has been started or if
the last configured vimacc® Workstation instance is terminated, the following
error message is generated:

resp=systemstatus;userdata=1234;property=workstations;con
tent=state\=error\;errcause\=no workstation available\;so
urce\=401

e hosts:
Displays the overall status of the configured vimacc® controller instances.
Faulty controller instances are output in a comma separated list within the
source parameter.

The respective message is as follows (example):
resp=systemstatus;userdata=s;property=hosts;content=state
\=ok

e services:
Displays the overall status of all configured vimacc® services. vimacc®
services are the provided functions of certain vimacc® modules like

AccVimaccEventManager or AccVimaccControlinterface.
Faulty services are output in a comma separated list within the source
parameter.

The respective message is as follows (example):
resp=systemstatus;userdata=s;property=services;content=st

accellence page 4

c o foail e

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL
ate\=ok

e licence:
Displays whether the licence check detected any errors with respect to the
vimacc® module or the input/output channels used.
The respective message is as follows (example):
resp=systemstatus;userdata=s;property=licence;content=sta
te\=ok

3.7.3.23 Requesting Status Information about the vimacc
Configuration Servers

Command:
cmd=subscribeconfigserverstatus;userdata=<text>;activate=<0|1>

Response:
resp=subscribeconfigserverstatus;userdata=<text>;activate=<0]1
>;answer=ok|failed

Status message:
resp=configserverstatus;property=<property>;content=<status
text>

vimacc® can be operated as distributed system where the central components can
be operated on different computers to ensure a higher reliability. In such a system,
the central database service for the entire configuration of a vimacc system, its
control and all of its system states (the so called vimacc Configuration server) is
operated on two different computers where one of the computers assumes the
leading role and the other (the redundant partner) is operated in hot standby mode.

Using the subscribeconfigserverstatus command, status messages about
the active configuration server can be subscribed.

Parameter activate is used to subscribe to/unsubscribe from status information.

After successful execution of this command the status information of the active
configuration server is sent to the MMS with status message
resp=configserverstatus once.

In this case, further resp=devicestatus status messages are only sent to the
MMS when the respective values are changed.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

MMS->vimacc:
cmd=subscribeconfigserverstatus;userdata=786;activate=1

accellence page 50

e chnologloes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

vimacc>MMS:
resp=subscribeconfigserverstatus;userdata=786;activate=1;answe
r=ok

vimacc>MMS (spontaneous event):
resp=configserverstatus;userdata=786;property=hostname;content

=Server#l

3.7.3.23.1 Reported Status Information about the vimacc
Configuration Servers

Information about the status of the vimacc® configuration servers are usually divided
into several sections that are returned with the property=<property> parameter

in each case.
The returned content=<status text> parameter then contains the actual status

information in text form.

The following information is returned:
e hostname:
Returns the name of the active configuration server.

The associated message is:
resp=configserverstatus;userdata=1234;property=hostname;c
ontent=laptop-heinrich

e redundancyState:
Returns the current redundancy status.

The associated message is:
resp=configserverstatus;userdata=1234;property=redundancy
State;content=RCO

RCO means that both configuration server are active and that the vimacc®
configuration database RCO is loaded. The current configuration master is
returned with the hostname parameter (see above).

RC1 means that a configuration server is down and that the vimacc®
configuration database RC1 is loaded. The current configuration master is
returned with the hostname parameter (see above).

RC2 means that a configuration server is down and that the vimacc®
configuration database RC2 is loaded. The current configuration master is
returned with the hostname parameter (see above).

accellence page 1

¢ ol oaioe

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3.24 Requesting Status Information from vimacc Hosts

Command:
cmd=subscribehoststatus;hostnames=<text>;userdata=<text>;activ
ate=<0]1>

Response:
resp=subscribehoststatus;hostnames=<text>;userdata=<text>;acti
vate=<0|1>;answer=ok|failed

Status message:
resp=hoststatus;userdata=<text>;hostname=<text>;property=<prop
erty>;content=<status text>

This command can be used to subscribe to changes to the status information of the
vimacc® hosts.

The hostnames parameter in this command defines the host names from which the
status information is requested.

If multiple hosts be subscribed, the respective hostnames values have to be
separated from each other by a comma ().

The hostnames parameter is optional. If this parameter is empty status information
from all hosts will be subscribed.

The parameter activate=1 activates, activate=0 deactivates the subscription.
Each call of subscribehoststatus overrides previous calls of this command.

The parameter userdata is not evaluated but returned within the responses to
ensure a better differentiation of the received messages.

After successful execution of this command the status information of all respective
hosts are sent to the MSS with the status message resp=hoststatus (see below)
once.

Further status messages resp=hoststatus are only sent to the MMS when the
status of a subscribed vimacc® host has changed.

Example:
¢ MMS->vimacc:
cmd=subscribehoststatus;hostnames=host#1, host#2;userdata=
789;activate=1

vimacc>MMS:
resp=subscribehoststatus;names=host#1l,host#2;userdata=789
;activate=1l;answer=ok

vimacc>MMS (spontaneous status change):
resp=hoststatus;userdata=789;hostname=host#l;property=mon
itoring;content=memoryusage\=0.59\;partitionusage\=0.67

accellence page 5

¢ ol oaioe

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.3.24.1 Status Information from vimacc Hosts

Information about the status of vimacc® hosts are usually divided into several
sections that are returned with the property=<property> parameter in each case.

The returned content=<status text> parameter then contains the actual status
information in text form.

Possible Parameters are:

e monitoring:
Displays the status of the observed host parameters, e.g. memory usage
(memoryusage=...") and storage capacity usage (‘partitionusage=..")in
percent.

e availability:
Displays whether a device is available. Availability in this context means
whether the device was found in the system database, initialized by the

respective vimacc® software component and registered to the vimacc®
system.

accellence Page 53

technologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.4 VIMACC_CONTROL_DEVICES_ALARMS _
SCENARIOS

3.7.4.1 General

This protocol adds commands for connecting scenarios, transferring alarms to the
vimacc® system and accepting/completing generated alarms to the
VIMACC_CONTROL_BASIC protocol.

3.7.4.2 Connecting a Scenario

Command:
cmd=showscenario; scenario=<name>;dest=<DisplayID>;createAlarm=
<1|0>;contextid=<text>;userdata=<text>

Response:
resp=showscenario;scenario=<name>;dest=<DisplayID>;createAlarm
=<1]0>;contextid=<text>;userdata=<text>;answer=ok|failed

This command can be used to connect a scenario to a vimacc® Workstation or
vimacc® Display instance (DisplaylID).

Scenarios are referenced by their name. They have to be configured in the vimacc®
system first. If the scenario is not known at the time of the connection, the response
to the command contains the text answer=failed, unknown scenario.

Parameter createAlarm=<1 | 0> defines whether an alarm should also be triggered
by the respective vimacc® Workstation instance when the scenario is connected.
Triggering an alarm in connection with a scenario has the effect that the alarm
recording for the video cameras involved is activated (if a recording connection is
configured for the respective cameras). Usually, activating an alarm recording of a
camera initiates the backup of a possibly configured pre-alarm recording and the
increase of the refresh rate of the recording connection.

From this time on, the triggered alarm is identified by the value passed with the
contextid parameter. Here, the caller has to be ensure a unique contextid.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

To terminate the connection established in context with the scenario the cmd=clear
command (see above) can be used.

accellence page 54

e chnologloes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Note:

An alarm triggered due to the connection of a scenario and the respective alarm
recording can be terminated by acknowledging the alarm at one of the vimacc®
Workstation instances or by using the respective command on the control interface
(= command finishAlarm).

Example:
¢ MMS->vimacc:
cmd=showscenario;scenario=Scenario#l;contextid=1234;dest=
AP 1

vimacc>MMS: (known scenario)
resp=showscenario;scenario=Scenario#l;contextid=1234;dest
=AP 1;answer=ok

vimacc>MMS: (unknown scenario)
resp=showscenario; scenario=Scenario#l;contextid=1234;dest
=AP 1;answer=unknown scenario

3.7.4.3 Reporting an Alarm Event to the vimacc System

vimacc® can react to spontaneous events and execute actions automatically that
were assigned to the event during configuration, if required.

Examples for a spontaneous event are a motion detected in a camera image, a
closed or opened contact at an I/O module or an alarm transferred from the MMS.

A vimacc®Workstation can also display events respectively alarms signalized in the
vimacc® system in an alarm queue to provide the user logged in with an overview of
the signalized events and to enable processing in a certain order.

Command createalarmforalarmgueue can be used to create alarms within the
vimacc® system that should be displayed in the alarm queue and "processed" by a
user.

There are also commands that can be used to terminate alarms or to accept and
confirm a certain alarm from the alarm queue at a vimacc® Workstation (see chapter
3.7.4.4 and 3.7.4.5).

Command:
cmd=createalarmforalarmqueue;contextid=<text>;timetolive=<wert
>; scenario=<name>;alarmtype=<text>;alarmprio=<wert>;destinatio
nids=<Komma-separierte ID Liste>;userdata=<text>

Response:

resp=createalarmforalarmqueue; contextid=<text>;scenario=<name;
timetolive=<wert>;alarmtype=<text>;alarmprio=<wert>;destinatio
nids=<ids>;userdata=<text>;answer=ok|failed

accellence page 5

chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

This command can be used to create an alarm within the vimacc® system that is
automatically added to the system's alarm queue.

Parameter contextid is then used to identify and reference the generated alarm.
Here, the caller has to ensure a unique contextid.

If an alarm with this contextid has already been activated within the vimacc®
system, response answer=failed,duplicate contextid Is returned.

Later, the contextid passed here is required to accept or terminate an alarm (>
see commands acceptalarmand finishalarm).

An alarm generated this way is automatically added to the so called alarm queue and
it is expected that the alarm is accepted and confirmed by a user (or MMS).

Parameter timetolive defines the alarm lifecycle in seconds. Value 0 means
indefinite so that the alarm persists until it is accepted and confirmed, i.e. it is not
terminated automatically by the vimacc® system.

A value of x mit x>0 means that the alarm should automatically be terminated by
the vimacc® system after x seconds.

Note: If a value greater than O is passed for the timetolive parameter, the alarm is
automatically terminated by the vimacc® system after the specified period of time
regardless whether it has been accepted and confirmed by a user or not.

Parameter scenario specifies the scenario to be connected when the alarm is
accepted at a vimacc® workstation. The alarm can be accepted by the user itself or
programmatically by the MMS (= see command acceptalarm).

Scenarios are referenced by their name. They have to be configured in the vimacc®
system first.

Parameter alarmtype is optional and can be used to define a type description for

the alarm triggered. This type can be used for a better differentiation between the
different alarms.

Parameter alarmprio is optional and can be used to determine an alarm priority.
Within the vimacc® system, the highest alarm priority is defined by the 0 value. If this
parameter is not specified, an alarm with a priority of 1 is generated.

Parameter destinationids is optional and enables the user to specify the
vimacc® workstations at which the generated alarm should be displayed in the alarm
queue. Here, a comma separated list of vimacc® IDs from the respective vimacc®
workstation instances is expected. If the parameter is not specified, the alarm is
triggered at all vimacc® workstations.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

¢ MMS->vimacc:
cmd=createalarmforalarmqueue; contextid=1234;timetolive=0;

accellence page 56

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

scenario=scenario\ #1

vimacc>MMS: (contextid has not yet been assigned)
resp=createalarmforalarmqueue;contextid=1234;timetolive=0
;scenario=scenario\ #1;answer=ok

vimacc>MMS: (contextid has already been assigned)
resp=createalarmforalarmgueue;contextid=1234;timetolive=0
;scenario=scenario\ #1l;answer=failed,duplicate contextid

3.7.4.4 Accepting an Alarm for a Workstation Instance

Command:
cmd=acceptalarm; contextid=<text>;dest=<DisplayID>;userdata=<te
xt>

Response:
resp=acceptalarm;contextid=<text>;dest=<DisplayID>;userdata=<t
ext>;answer=ok|failed

This command can be used to assign a queueing alarm within the vimacc® system
directly to a vimacc Workstation instance for processing, i.e. the controlling instance
accepts the respective alarm on behalf of the user.

When an alarm is accepted it is removed from the alarm queue of the system and a
scenario which might have been passed before (- see command createalarm) is
connected to the respective vimacc® Workstation instance.

Parameter contextid is used to identify the alarm. If there is no alarm with this
contextid in the vimacc®system, the command cannot be executed and response
answer=failed, unknown contextid is returned.

Parameter dest defines the vimacc® Workstation instance that should accept the
alarm. A scenario that has already been transferred (- see command
createalarm) is connected to this very vimacc® Workstation instance. If the
referenced workstation is not available, the command cannot be executed and
response answer=failed,device not available is returned.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received. In addition, this value is logged in the
vimacc® Event database and can be used as search criterion in the course of a post-
processing step.

Example:

e MMS-vimacc:
cmd=acceptalarm; contextid=1234;dest=AP 1;userdata=data

accellence page 57

c ol oail e

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

vimacc>MMS: (contextid known)
resp=acceptalarm; contextid=1234;dest=AP 1l;userdata=data;a
nswer=ok

vimacc>MMS: (contextid not known)

resp=acceptalarm; contextid=1234;dest=AP l;userdata=data;a
nswer=failed, unknown contextid

vimacc>MMS: (Workstation instance not available)

resp=acceptalarm; contextid=1234;dest=AP 1l;userdata=data;a
nswer=failed,device not available

3.7.4.5 Terminating an Alarm

Command:
cmd=finishalarm;contextid=<text>;userdata=<text>;tags=<text>

Response:
resp=finishalarm;contextid=<text>;userdata=<text>;tags=<text>;
answer=ok|failed

This command can be used to terminate an alarm within the vimacc® system.

If an alarm is terminated, associated actions configured are executed automatically
and the alarm is completed. Thus, no further actions specific for this alarm can be
performed.

If the alarm is still contained in the alarm queue of the system, it is automatically
removed.

Parameter contextid is used to identify the alarm. If there is no alarm with this
contextid in the vimacc®system, the command cannot be executed and response
answer=failed,unknown contextid is returned

accellence page 56

technoloagies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received. In addition, this value is logged in the
vimacc® Event database and can be used as search criterion in the course of a post-
processing.

Parameter tags is not evaluated. However, it is logged in the vimacc® Event
database and can be used as search criterion in the course of a post-processing
step.

Example:
¢ MMS->vimacc:

cmd=finishalarm;contextid=1234;userdata=data;tags=EMA

vimacc>MMS: (contextid known)
resp=finishalarm;contextid=1234;userdata=data;tags=EMA;an
swer=ok

vimacc>MMS: (contextid not known)
resp=finishalarm;contextid=1234;userdata=data;tags=EMA;an
swer=unknown contextid

3.7.4.6 Triggering the Alarm Status of a vimacc Device

Command:

cmd=triggerdevicealarm; source=<sourcelD>;alarmid=<text>;alarmt
ime=<utc timestamp iso 8601: yyyy-MM-dd'T'hh:mm:ss.zzz,
Default: current daytime>;userdata=<text>;contextid=<text>

Response:

resp=triggerdevicealarm; source=<sourcelID>;alarmid=<text>;alarm
time=<utc timestamp iso 8601: yyyy-MM-dd'T'hh:mm:ss.zzz,
Default: current daytime>;userdata=<text>;contextid=<text>;
answer=ok| failed

This command can be used to set a certain vimacc® device to the "Alarm" status.

The "Alarm" status may trigger different reactions depending on the device.

For example, in a vimacc® system, different recording connections can be configured
for video cameras from which one connection is usually used for "normal” archiving
and another for recording alarms. Then, an alarm recording can be configured in a
way that — when an alarm is triggered — the system backs up a possibly configured
pre-alarm recording and increases the refresh rate until the alarm is terminated.

Thus, this command can be used to activate an alarm for a specific vimacc® device.

In case of a vimacc® device, the "Alarm" status remains until the signalling is
revoked e.g. by using the cleardevicealarm command (see chapter 3.7.4.7).

accellence page 5

c ol oail e

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Parameter source defines the ID of the device for which the "Alarm" status should
be triggered.

Parameter alarmid is used to identify the alarm within the devices.
For a device, several alarms can be triggered whereby each alarm must have a
different alarmid.

Each alarm triggered has to be cleared by using the cleardevicealarm command
and the respective alarmid. Only when all alarms have been cleared, the "Alarm”
status is revoked by the device (see chapter 3.7.4.7).

Parameter alarmtime is used to set an alarm time. This parameter is optional. If a
time stamp is passed, it is passed as UTC (Coordinated Universal Time) time stamp
in the following format yyyy-MM-dd'T'hh:mm:ss.zzz

It no time stamp is passed, the current date and time are used as alarm time.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is
transferred as assignment characteristic when the command is logged in the vimacc
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Note:
vimacc® automatically activates an alarm for the devices when a command for
triggering an alarm (see chapter 3.7.4.2 and 3.7.4.3) is passed.

Note:

Please note that this command can only trigger the alarm status of a single vimacc®
device. The reaction to an "Alarm" status occurs inside the device as described
above.

This command cannot be used to trigger an alarm within the vimacc® system. For
this purpose, the commands for generating an alarm have to be used (see chapter
3.7.4.2 and 3.7.4.3).

Example:

MMS->vimacc:
cmd=triggerdevicealarm; source=cam demostreams maneki-

neko 0001;
alarmid=testalarm;alarmtime=20220320T182037.125%Z;userdata=test
;contextid=1234

vimacc>MMS:
resp=triggerdevicealarm; source=cam demostreams maneki-
neko 0001;alarmid=testalarm;

accellence Page 60

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

alarmtime=20220320T182037.125%Z; userdata=test;contextid=1234
;answer=ok

3.7.4.7 Clearing the Alarm Status of a vimacc Device

Command:
cmd=cleardevicealarm; source=<sourcelD>;alarmid=<text>;userdata
=<text>;contextid=<text>

Response:
resp=cleardevicealarm; source=<sourcelD>;alarmid=<text>;userdat
a=<text>;contextid=<text>;answer=ok|failed

This command can be used to clear a previously triggered alarm for a specific
vimacc® device.

However, the overall "Alarm" status is not revoked until all alarms triggered within the
device are cleared.

Resetting the "Alarm" status may trigger different reactions depending on the device.

For the video cameras described in chapter 3.7.4.6, clearing the "Alarm" status has
the effect that the alarm recoding is stopped.

Parameter source defines the ID of the device for which the "Alarm" status should
be cleared.

Parameter alarmid is used to identify the alarm within the devices.

Parameter alarmtime is used to set an alarm time. This parameter is optional. If a
time stamp is passed, it is passed as UTC (Coordinated Universal Time) time stamp
in the following format yyyy-MM-dd'T'hh:mm:ss.zzz.

It no time stamp is passed, the current date and time are used as alarm time.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is passed as
assignment characteristic when the command is logged in the vimacc®
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Note:
The clearing of an alarm is automatically activated by vimacc® for the devices when
a command for terminating an alarm is passed (see chapter 3.7.4.5).

Note:
Please note that this command clears the alarm status of a single vimacc® device
only. This command cannot be used to terminate an alarm within the vimacc®

accellence page 61

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

system. For this purpose, the command for terminating an alarm has to be used (see
chapter 3.7.4.5).

Example:

MMS->vimacc:
cmd=cleardevicealarm; source=cam demostreams maneki-neko 0001;
alarmid=testalarm;userdata=test;contextid=1234

vimacc>MMS:
resp=cleardevicealarm; source=cam demostreams maneki-neko 0001;
alarmid=testalarm;userdata=test;contextid=1234;answer=ok

3.7.4.8 Delete Protection for Time Ranges of a Playback Stream

Command:
cmd=addstreamprotection;playbackid=<playbackid;begintime=<utc
timestamp iso 8601: yyyy-MM-dd'T'hh:mm:ss.zzz>;endtime=<utc
timestamp iso 8601: yyyy-MM-dd'T'hh:mm:ss.zzz>;
userdata=<text>;contextid=<text>

Response:
resp=addstreamprotection;playbackid=<playbackid>;begintime=<ti
mestamp>;endtime=<timestamp>;userdata=<text>;userdata=<text>;c
ontextid=<text>;answer=ok|failed

This command can be used to protect a specified time range of a playback stream
from being overwritten (delete protection). This can be useful when the respective
stream is usually recorded in a ring and certain areas should not be deleted during
the next automated archive adjustment.

If the recorded content is stored on several recording servers, the time ranges are
protected on all of these servers.

Parameter playbackid defines the ID of the playback stream for which time ranges
should be protected.

Parameters begintime and endtime define the time range to be protected. The
time stamps passed are expected as UTC (Coordinated Universal Time) time stamps
in the following format yyyy-MM-dd'T'hh:mm:ss.zzz.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is passed as
assignment characteristic when the command is logged in the vimacc®
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

accellence page 62

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Note:

If further channels are assigned to a stream (see associations in chapter
3.7.3.12), the specified time ranges are not automatically protected for these
channels. For this purpose, the respective playback streams have to be explicitly
protected by calling the addstreamprotection command again.

Example:

MMS->vimacc:

cmd=addstreamprotection;playbackid=cam0231 archiv;contextid=co
ntext#1l;begintime=2014-03-31T18:00:37.890;endtime=2014-03~-
31T18:10:37.890;userdata=test;contextid=<text>

vimacc>MMS:

resp=addstreamprotection;playbackid=cam0231 archiv;contextid=c
ontext#l;begintime=2014-03-31T18:00:37.890;endtime=2014-03-
31T18:10:37.890;userdata=test;answer=ok

3.7.4.9 Removing a Delete Protection for a Time Range of a
Playback Stream

Command:
cmd=removestreamprotection;playbackid=<playbackid>;begintime=<
utc timestamp iso 8601: yyyy-MM-dd'T'hh:mm:ss.zzz>;
endtime=<utc timestamp iso 8601: yyyy-MM-dd'T'hh:mm:ss.zzz>;
userdata=<text>;contextid=<text>

Response:
resp=removestreamprotection;playbackid=<playbackid>;begintime=
<timestamp>;endtime=<timestamp>;userdata=<text>;userdata=<text
>;contextid=<text>;answer=ok|failed

This command can be used to remove the write protection from a time range of a
video stream that was protected by using the addstreamprotection command
(see chapter 3.7.4.8) so that it will be deleted during the next automated archive
adjustment.

If the recorded content is stored on several recording servers, the delete protection is
removed for all servers.

Parameter playbackid defines the ID of the playback stream for which the
protection should be removed from a specific time range.

The parameters begintime and endtime define the protected time range. The time
stamps passed are expected as UTC (Coordinated Universal Time) time stamps in
the following format yyyy-MM-dd'T'hh:mm:ss.zzz.

accellence Page 63

technologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is passed as
assignment characteristic when the command is logged in the vimacc®
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

MMS->vimacc:

cmd=removestreamprotection;playbackid=cam0231 archiv;contextid
=context#l;begintime=2014-03-31T718:00:37.890;endtime=2014-03~-
31T18:10:37.890;userdata=test

vimacc>MMS:
resp=removestreamprotection;playbackid=cam0231 archiv;contexti
d=context#1l;begintime=2014-03-31T18:00:37.890;endtime=2014-03-
31T18:10:37.890;userdata=test;answer=ok

accellence page 64

e chnologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.4.10 Querying the Protected Sections of a Playback Stream

Command:
cmd=getstreamprotectionlist;playbackid=<playbackid>;userdata=<
text>

Response:
resp=getstreamprotectionlist;playbackid=<playbackid>;userdata=
<text>;answer=ok|failed;parameterlist{\r\n

begintime=<utc timestamp iso 8601: yyyy-MM-
dd'T'hh:mm:ss.zzz>;endtime=<utc timestamp iso 8601: yyyy-MM-
dd'T'hh:mm:ss.zzz>\r\n

begintime=<utc timestamp iso 8601: yyyy-MM-
dd'T'hh:mm:ss.zzz>;endtime=<utc timestamp iso 8601: yyyy-MM-
dd'T'hh:mm:ss.zzz>\r\n ..

\r\n}

This command can be used to query the protected sections of a playback stream.
Protected sections can be set by using the addstreamprotection command (see
chapter 3.7.4.8).

If the recorded content is stored on multiple recording servers, the protected time
ranges are determined on all servers and all ranges found are returned.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Parameter playbackid defines the ID of the playback stream whose limits should
be determined.

The limits determined are returned as UTC (Coordinated Universal Time) time
stamps in the following format yyyy-MM-dd'T'hh:mm:ss.zzz.

For each time range protected a line in the following format
begintime=<timestamp>\;endtime=<timestamp>\r\n is returned in the
response text.

Example:

MMS->vimacc:
cmd=getstreamprotectionlist;playbackid=cam0231 archiv;userdata
=test

vimacc>MMS:
resp=getstreamprotectionlist;playbackid=cam0231 archiv;userdat
a=test;answer=ok;parameterlist
{\r\nbegintime=2014-04-01T11:42:19.246\;endtime=2014-04-
01T11:49:38.727\r\n}

accellence Page 65

technologies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.4.11 Deleting a Time Range from a Playback Stream

Command:
cmd=removetimespanfromstream;playbackid=<playbackid>;begintime
=<utc timestamp iso 8601: yyyy-MM-dd'T'hh:mm:ss.zzz>;
endtime=<utc timestamp iso 8601: yyyy-MM-dd'T'hh:mm:ss.zzz>;
userdata=<text>;contextid=<text>

Response:
resp=removetimespanfromstream;playbackid=<playbackid>;begintim
e=<timestamp>;endtime=<timestamp>;userdata=<text>;userdata=<te
xt>;contextid=<text>;answer=ok|failed

This command can be used to delete a specific time range from a recorded video
stream.

If the recorded content is stored on several recording servers, the respective time
range is deleted on each server.

Parameter playbackid specifies the ID of the playback stream from which the
specified time range should be deleted.

Parameters begintime and endtime define the time range to be deleted. The time
stamps passed are expected as UTC (Coordinated Universal Time) time stamps in
the following format yyyy-MM-dd'T'hh:mm:ss.zzz.

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is
transferred as assignment characteristic when the command is logged in the vimacc
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

MMS->vimacc:
cmd=removetimespanfromstream;playbackid=cam0231 archiv;context
id=context#l;begintime=2014-03-31T18:00:37.890;endtime=2014-
03-31T18:10:37.890;userdata=test

vimacc>MMS:

resp=removetimespanfromstream; playbackid=cam0231 archiv;contex
tid=context#l;begintime=2014-03-31T18:00:37.890;endtime=2014-
03-31T718:10:37.890;userdata=test;answer=ok

accellence page o6

¢ ol oaioe

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.4.12 Setting a Text Mark for a Live Stream

Command:
cmd=setbookmarkforstream;deviceid=<deviceid>; text=<text>;userd
ata=<text>;contextid=<text>

Response:
resp=setbookmarkforstream;deviceid=<deviceid>; text=<text>;user
data=<text>;contextid=<text>;answer=ok|failed

This command can be used to store a text mark (bookmark) for a certain stream so
that a certain position can be easily found if a subsequent evaluation is required.

The text is passed to the vimacc® documentation layer together with the associated
point in time.

Parameter deviceid specifies the ID of the stream to which the text passed
should be assigned.

The entry passed in the parameter text should be included in inverted commas
("<text>") so that it can also include spaces and special characters. (Semicolons,
colons and inverted commas have to be escaped.)

Parameter contextid is used to identify and reference the command to previous
commands and events. The parameter itself is not evaluated. Instead, it is passed as
assignment characteristic when the command is logged in the vimacc®
documentation layer.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

Example:

MMS-vimacc:
cmd=setbookmarkforstream;deviceid=cam0231;contextid=context#1;
text="Dies ist der Text eines Lesezeichens";userdata=test

vimacc>MMS:
resp=setbookmarkforstream;deviceid=cam0231;contextid=context#l
;text="Dies ist der Text eines
Lesezeichens";userdata=test;answer=ok

accellence page o

¢ ol oaioe

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3. 7.5 VIMACC_ _CONTROL_ALL
3.7.5.1 General

This protocol adds commands for writing so called "data points" of the vimacc
system to the VIMACC_CONTROL_DEVICES_ALARMS_SCENARIOS protocol.

3.7.5.2 Writing a Data Point

Command:
cmd=writedp;contextid=<text>;datapointname=<text>;datapointval
ue=<text>

Response:
resp=writedp;contextid=<text>;datapointname=<text>;datapointva
lue=<text>;answer=ok|failed

This command can be used to write any data point of the vimacc system.

Parameter datapointname defines the data point to be written in the vimacc
Config, starting from the root node. Thus, the complete path of the data point has to
be specified.

Parameter datapointvalue defines the content to be written to the data point
passed.

Parameter contextid is not evaluated but used for logging and returned within the
responses to ensure a better differentiation of the messages received.

Note:

Here, key-value pairs have to be passed as content for parameter datapointvalue
as well, e.g. command cmd=show; source=cam0231;videodlg=1.

For a correct protocol evaluation the text to be passed of parameter
datapointvalue has to be escaped three times with special character '\' ".

This is because otherwise no special characters like ("), (\), (\r), (\n) and (\t) could be
passed and key-value pairs contained could not be correctly determined.

As the key-value pairs of this parameter are setup the same way as the entire
command, i.e. by using a (=), and the single key-value pairs are separated by a
semicolon (;), this structure could not be determined from the command without the
escape character.

accellence Page 60

ol oal e s

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Thus, the text to be passed has to be "escaped" in this parameter as follows:

1. As the commands are identified by the key-value pair cmd=<Kommando>
character '=' has to be escaped first.

2. Since the key-value pairs are separated by a ';', the ;' character has to be
escaped in the resulting text.

3. Since the protocol parser "de-escapes” the received text once as well, all
special characters have to be escaped in the resulting text again.

If e.g. command cmd=show; source=cam0231;videodlg=1 should be passed
with the datapointvalue parameter, the following text is passed:

1. Escape character '="
= cmd\=show; source\=cam0231;videodlg\=1

2. Escape ;' character in the resulting text:
= cmd\\=show\ ; source\\=cam0231\;videodlg\\=1

3. Escape all special characters in the resulting text again:
= cmd\\\\=show\\;source\\\\=cam0231\\;videodlg\\\\=1

Example:

e MMS-vimacc:
cmd=writedp;contextid=1234;datapointname=ActiveDevicelist
/4000/command/request;datapointvalue=cmd\\\\=show\\; sourc
e\\\\=10000\\;videodlg\\\\=VD1

vimacc>MMS:
resp=writedp;contextid=1234;datapointname=ActiveDevicelis
t/4000/command/request;datapointvalue=cmd\\\\=show\\; sour
ce\\\\=10000\\;videodlg\\\\=VD1;answer=ok

3.7.5.3 Writing the Command Data Point of a vimacc Device

Command:
cmd=writecommanddp;contextid=<text>;deviceid=<deviceid>;datapo
intvalue=<text>

Response:
resp=writecommanddp;contextid=<text>;deviceid=<deviceid>;datap
ointvalue=<text>;answer=ok|failed

This command can be wused to write the command data point (the
command/request data point) of a vimacc® device.

Parameter deviceid defines the respective vimacc® device. It is checked whether
the device has already been activated within the vimacc® system. If not,
answer=failed,device not available is returned

accellence page 69

e chnologloes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Parameter datapointvalue defines the content to be written to the data point
passed. Here, the transferred text has to be escaped as well (->command writedp).

Parameter contextid is not evaluated but used for logging and returned within the
responses to ensure a better differentiation of the messages received.

Example:
¢ MMS->vimacc:

cmd=writecommanddp;contextid=1234;deviceid=4000;datapoint
value=cmd\\\\=show\\;source\\\\=10000\\;videodlg\\\\=VD1

vimacc>MMS:
resp=writecommanddp;contextid=1234;deviceid=4000;datapoin

tvalue=cmd\\\\=show\\; source\\\\=10000\\;videodlg\\\\=VD1l
;answer=ok

3.7.5.4 Reading a Data Point
Command:

cmd=readdp;userdata=<text>;datapointname=<text>

Response:
resp=readdp;userdata=<text>;datapointname=<text>;answer=ok, <da
tapoint value>|failed

This command can be used to read any data point of the vimacc® system.

Parameter datapointname defines the data point to be read in the vimacc® Config
file, starting from the root node. Thus, the complete path of the data point has to be
specified.

Parameter userdata is not evaluated but returned within the responses to ensure a
better differentiation of the messages received.

The value of the data point read is returned in the answer.

accellence Page 70

e chnologloes

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

Note:

To be able to extract the returned content of the read data point from the response
text, (special) characters like ("), (\), (\r), (\n), (\t), (=), (,) and (;) are preceded by the
escape character (\).

Example:

® MMS-vimacc:
cmd=readdp;userdata=1234;datapointname=ActiveDevicelList/4
01/command/response

vimacc>MMS:
resp=readdp;userdata=1234;datapointname=ActiveDevicelList/
401/command/response;answer=ok,cmd\=acceptalarm\;contexti
d\=11\;error\=rejected

accellence page 71

noloaies

vimacc - TCP Steuerschnittstelle Chapter 3: VIMACC_CONTROL

3.7.6 VIMACC_CONTROL_FALLBACK
3.7.6.1 General

This protocol provides only a limited set of commands. It is used to obtain some
information about the status of a vimacc® system when it can no longer be operated
correctly.

This might be the case when the required licence has not yet been activated or is
expired. Demo setups can usually be used for up to 12 weeks. After that, the
vimacc®components will be deactivated.

To ensure that a higher level management system is at least informed about the key
error states, this protocol is activated by default.

3.7.6.2 Querying Available Commands

Command:
cmd=help;userdata=<text>

Response:
resp=help;userdata=<text>;answer=ok,parameterlist{\r\nbefehl#l
\r\n...befehl#n\r\n}

For more information, refer to chapter 3.7.3.2.

3.7.6.3 Monitoring the Control Connection

Command:
cmd=keepalive;userdata=<text>

Response:
resp=keepalive;userdata=<text>;answer=ok

For more information refer to chapter 3.7.3.3.

3.7.6.4 Requesting Status Information from the vimacc System

Command:
cmd=subscribesystemstatus;userdata=<text>;activate=<0]|1>

Response:
resp=subscribesystemstatus;userdata=<text>;activate=<0|1>;answ
er=ok|failed

Status message:
resp=systemstatus;userdata=<text>;property=<property>;content=
<status text>

For more information refer to chapter 3.7.3.22.

accellence Page 72

technologioes

vimacc - TCP Steuerschnittstelle Chapter 4: vimacc Live

|4 vimacc Live

Access to live streams of the system can be enabled by implementing the vimacc®
video widget or by using the vimacc® RTSP server.
See also chapter 3.7.3.11 Querying Configured Cameras

4.1 Video Widget

The video widget is a C++/QT basic implementation for displaying video streams of a
vimacc® system. Video streams are retrieved directly via TCP/IP from the vimacc®
interface process and displayed. The corresponding codecs are already contained.
The implementing body has to register and pay for the respective patent portfolio
usage rights at MPEGLA.

SIMATIC WinCC OA Video EWO is an implementation variant of the vimacc® video
widget.

An autonomic video widget is not subjected to the vimacc® Rights Management
when it comes to displaying streams as it is not connected to the central vimacc®
configuration. Thus, no user rights can be assigened.

The retrieving body has to provide for an access protection by means of respective
mechanisms.

4.2 RTSP Server

The vimacc® RTSP server is a basic setup component and part of all vimacc®
editions. It has to be activated via the licence files and configured by the vimacc®
AdministrationCenter, see vimacc®Administrator's Guide.

Access is performed by using the regular access notation via the following URL
structure:
rtsp://<Rechnername>:<Port>/<StreamID>/live

<Rechnername> Name or IP address of the server/PC
<Port> Port number (default: 5544)
<StreamID> vimacc®Stream-1D

See also chapter 3.7.3.11 Querying Configured Cameras
Example: rtsp://VideoServerl:5544/cam_axis2025_0001/live
The RTSP server can only be used to retrieve streams in H.264 or MPEG4 format.

For accessing streams with other codecs the vimacc® HTTP server can be used. It
provides all stream types in a uniform and transcoded MJPEG stream.

accellence Page 73

ol oal e s

vimacc - TCP Steuerschnittstelle Chapter 5: vimacc Playback

|5 vimacc Playback

Access to live streams of the system can be enabled by implementing the vimacc®
video widget or by using the vimacc® RTSP server.
See also chapter 3.7.3.12 Querying Available Playback Streams

5.1 Video Widget

The video widget is a C++/QT basic implementation for displaying video streams of a
vimacc® system. Video streams are retrieved directly via TCP/IP from the respective
vimacc® server process and displayed. The corresponding codecs are already
contained. The implementing body has to register and pay for the respective patent
portfolio usage rights at MPEGLA.

SIMATIC WinCC OA Video EWO is an implementation variant of the vimacc® video
widget.

An autonomic video widget is not subjected to the vimacc® Rights Management
when it comes to displaying streams as it is not connected to the central vimacc®
configuration.

The retrieving body has to provide for an access protection by means of respective
mechanisms.

5.2 RTSP Server

The vimacc® RTSP server is a basic setup component and part of all vimacc®
editions. It has to be activated via the licence files and configured by the vimacc®
AdministrationCenter, see vimacc®Administrator's Guide.

Access is performed by using the regular access notation via the following URL
structure:
rtsp://<Rechnername>:<Port>/<StreamID>/playback

<Rechnername> Name or IP address of the server/PC
<Port> Port number (default: 5544)
<StreamID> vimacc®Stream-ID

See also chapter 3.7.3.12 Querying Available Playback Streams
Example: rtsp://VideoServerl:5544/cam_axis2025 0001/playback
The RTSP server can only be used to retrieve streams in H.264 or MPEG4 format.

For accessing streams with other codecs the vimacc® HTTP server can be used. It
provides all stream types in a uniform and transcoded MJPEG stream.

accellence Page 74

noloaies

vimacc - TCP Steuerschnittstelle Chapter 6: Support / Hotline

|6 Support / Hotline

More information: www.vimacc.de

Do you have any questions about vimacce?

e Send an email to support@accellence.de
or

e Call our hotline: +49 (0)511 277 2490

Our staff is happy to help you from 09:00 AM to 5:00 PM CET/CEST on business
day.

accellence Page 75

technologioes

vimacc - TCP Steuerschnittstelle

|7 Index

A
acceptalarMu .
Activating live connections
addstreamprotection
Application layercoeovcvveeeeviieeeee e, 11
Authenticationcccceeveeviniineeneeeeee e, 13
C
CLlEaT ittt 17
cleardevicealarM ., 61
Clearing the alarm status of a device.................... 61
Command
acceptalarM e 57
addstreamprotection .ceeriiennenee 62
cleardevicealarMu e, 61
createalarmforalarmqueue 55
finishalarm e
fOCUS ittt
getcameralist
getmonitorlist e 37
getplaybacklist e 30
getscenariolist . 39
getstreaminfo. . 34
getstreamprotectionlist ... 65
getstreamtimeline .iieeieniiinnnnee
getworkstationlist
Nelp
1T IS it
keepalive i,
I oTe i o WO ST PP OPPRUPPTN
IOV teteruureeeaiureeeenireeesaurreessreeessnsreeessseeesssneees
Teaddp «vveeriiiiei i

setworkstationgeometry ...ciineenn.
setworkstationgrid.........
setworkstationscalemode

ShOWSCENAT IO v

Streamcontrol . cierieerireiiiieneeeeeeeiaaenn.

subscribeconfigserverstatus....... 50
subscribedevicestatusS...ccoooiiiiinnnnnee 39
subscribeeventsS . s 43
subscribehoststatus......... .52
subscribeplaybackstatus......ccooouneee 45
subscribesystemstatus......ccouune. 47,72
triggerdevicealarM...... 59
Writecommanddp .. e 69
(e I =Y | J N 68

Command

C LB AT ettt ettt 17
Command
getplaybacksessionsforplaybackid
.. 33
configserverstatus iiiieinieieieienenn, 50
Connecting a scenario
Connection SETUPcccvvreriiiiiiiiiiee e,
Controlling a playback streamccccocvveiennen. 24
Controlling a PTZ camera.......ccccceeevvveeeeceveeecnnen. 27
createalarM. e eeeveinnn s 56, 57
createalarmforalarmgqueuecceererernnnn. 55
D
Defining the alarm status of a device 59
Defining the geometry of a workstation.............. 18
Defining the scaling behaviour of the video dialogs
Of @ WOrkstationceceevveeniieenieeniieesieennenn 23
Defining the video dialog arrangement of a
WOPKStAtion ...cccecveieieiier e 22
Deleting time ranges.......ccceeeveveeenieeeneennieeeneenne 66
devicestatUS e 39
Disconnecting live connections..........ccccecuveevueennne 17
E
©SCAPE 1uvvrvrererererererererererererererer————————————————————————————. 12
Escape character.......ccccoeeevcieeicciei e 12
EScape SeqUENCEccceveveieiiieieieieieiiieieeeeeeenens 68

F

finishalarM. e 58
FOCUS ittt 27
G

getcameraliSt i 29
getmonitorlist ., 37
getplaybacklist. e, 30
getplaybacksessionsforplaybackid. 33
getscenariolist e, 39
getstreaminfo . 34
getstreamprotectionlist. ... 65
getstreamtimeline ... 36
getworkstationlist .. 38
H

accellence

technoloaglioes

Page 76

vimacc - TCP Steuerschnittstelle

K

keepalivVe ittt 15,72
KeePaliVe ittt 12
M

Monitoring the control connection................ 15,72
IOV tieteteruueneeeeerererenseeeeeeennnnnreeeeeeenesnesseseesesennnns 27
MPEGLA......oiittiiitenteerre et sre e 73,74
N

Network and transport layer

Network reSSOUrCEScccuveeerieeeeniieeerieeeesieeeann

P

Pause playbacK........ccveeveiiiiiiieeeee e, 25
playbackstatus ... 45
Position playbackcccceeeeiiieniiinieieceieee, 26
Presentation layer.......ccccoeeeiiieeeeciee e 11
PIesSel i, 28

Preventing time ranges from being overwritten . 62

Q

QUETLYEVENLS coviiiiiiiiiiiieeececeree e, 50, 51
Querying available commands....................... 15,72

Reading data pointsccccceeeeriieiciiiieeee e,
Releasing protected ranges........cccccceeeecvveeecnvnennn.
removestreamprotection oiieeeeenees
removetimespanfromstream
Reporting alarms........cccovveeeeiiieiciiiiieee e,
Reporting an alarm eventcccevveeeniiieiinieenn.
Requesting event informationcccceeeunee..
Requesting status information............ 39,47,50,72
Requesting status Information from playback
SErEAMS .eeeiiiiiieee e 45

S

SESSION laYer: oo 11

setbookmarkforstream....cccooeiiiiiiiiiiinnnnn. 67
Setting text Mark.......cccceeeeeeeieciee e, 67
setworkstationgeometry...iiiiiiinnne 18
setworkstationgrid .., 22
setworkstationscalemode....ccoocceernnnnnee 23
S OW et 16
ShoWSCEeNAT IO i 54
Site 1aYOULS...eeieiiieeeeciee e 7
Start playbackcoovieiieiiiiiie, 25
SEreamCONtIOLl i 24
subscribeconfigserverstatus........... 50
subscribedevicestatusS .coooeiiiiiiiiiiinnnnn.
subscribeevents.
subscribehoststatusS .ccccceciiiiiiieenennnnee
subscribeplaybackstatus
subscribesystemstatusS ..ccoceeerererennnn.
SUPPOIt .ovvviviieeeeieeeeeeeeee

systemstatus

T

TCP POIt oo 12
Terminating an alarm.......cccooceevvienieeniienieeeeene 58
triggerdevicealarlm .cooeniiiiiiiieeeennn. 59
v
VIMACC_CONTROL........oooiiiiiieeieeiiiieeeee s
VIMACC_CONTROL_ALLutvriieieeiiiiieeeee e
VIMACC_CONTROL_BASIC

VIMACC_CONTROL_DEVICES_ALARMS_
SCENARIOScoovviiiiiiiiiiiiiniiiee
VIMACC_CONTROL_FALLBACK
VIMACC_LIVE..........ociiiiiiiiiiiiii e,
VIMACC_UNIT.....ccooiiiiiiiiiiien, 8

w

Writing data points
Writing data points

accellence

technologies

Page 77

